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FOREWORD

I am particularly pleased to introduce this monograph, which sets forth the

mathematical theory underlying the applied research in cartography carried

out at the Bureau of the Census. During my tenure as Director of th& Bureau,

I have consistently stressed the need for high quality graphic presentations,

especially cartographic presentations.

There is abundant evidence that computers can provide greatly improved

graphic presentation techniques, but these improvements can only be built on

a sound theoretical foundation.

The topological theory presented here is the foundation for the Bureau's

GBF/DIME program and for continued Bureau research. It is a mathematical

basis upon which computer science can build a fully automated cartographic

system.

During the International Symposium on Computer-Assisted Cartography

in Reston, Virginia, September 23, 1975, I challenged the participants to

advance the state of the art more in the coming decade than our predecessors

have accomplished in the last century. I hope that this publication will be not

only a guide to practitioners of automated cartography, but also a stimulus to

researchers in meeting the challenge.

The Bureau welcomes comments and suggestions from users of this

technical paper.

VINCENT P. BARABBA
Director

Bureau of the Census
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Part I. Topological Principles in Cartography

INTRODUCTION

The essential feature of a system of computerized cartography is

the use of an arithmetic model of a map. From an information

theoretic point of view, a properly designed model wouid be

equivalent to the source maps which the model is intended to

represent. The most primitive model of this kind is the simple

tracing in which the graphic structure on the map is represented

by polygonal arcs defined by the coordinates which determine

the endpoints of the arcs. If such a model contains, in addition

to the metrical descriptions of the graphic structure, the textual

annotation, properly located with respect to the graphic

elements, then the question of the equivalence of the model to

the source map is merely a question of the fidelity of the tracing

and the degree of approximation attained by the method used

for representing the polygonal arcs of the graph.

A number of projects have been carried out that have as

their objective the production of maps by this method or some

closely related method. Technical problems connected with

attaining the desired fidelity of representation aside, there are

some important practical difficulties associated with this meth-

od. These difficulties manifest themselves in two ways: first,

severe optical clutter occurs attending attempts to plot frorr

erroneous model data, and second, difficulties are encountered

in attempting to retrieve data linked to the map.

The difficulties are largely eliminated if the model of the

map is extended to contain an explicit description of the

cellular structure of the map. The cellular structure of a map is

defined by the graphic elements which represent linear arcs,

their terminal points, and the areas bounded by polygonal

chains of arcs. Throughout the remainder of this monograph,

such cellular objects will be denoted as O-cells, 1-cei!s, and

2-cells respectively. The first advantage of such a model is that

the cells are the natural cartographic objects with which data

having geographic linkages may be made to correspond. Every

possible finitary geometric structure associated with a map must

be susceptible to description in this way. The second advantage

is one that is often seriously underestimated. A cellular model

may be manipulated algebraically. As a consequence, the

geometric constraints inherent to a cell structure may be used as

tests of the consistency of the model, both in terms of the

properties of individual cells, and in terms of the global

relational scheme. Either of these advantages standing alone

would more than justify the adoption of a cellular model as an

extension of simple tracing. Taken together they provide more

than ample justification.

The cell structure simplifies the problems associated with

data retrieval. When retrieving data by direct visual inspection of

actual maps, one encounters serious problems in localizing

selected cartographic objects. An automated system provides for

automatic searching of indexes, and selective plotting of

specified cartographic structures. Thus, the data retrieval prob-

lem is completely and efficiently automated by the cellular

model.

The fact that the consistency of the cellular model may be

tested by simple algebraic procedures is the basis of a

comprehensive scheme of editing which virtually assures the

geometric self-consistency, not only of the map model, but of

the source map from which it was derived. The major objective

of this monograph is to provide explicit technical documenta-

tion from which such a system may be reconstructed. To this

end the topological relations must be expressed as a formal

system of relations which may be reduced to a computerized

representation or model.

Equally important is the presentation of a computerized

realization of this formal system. The particular realization is

the system of automated cartography known as ARITHMICON.
The extant version of this system is written in MACRQ-10, for

use in the DEC-10 computer.

This documentation is being designed to serve two purposes.

First, it serves as a guide to the interpretation of the present

realization of the system ARITHMICON. Second, it is intended

to serve as a reference for the use of those who may wish to

construct an independent system of computerized cartography

for their own purposes.

COMBINATORIAL TOPOLOGY
in this section, the main facts of combinatorial topology related

to practical cartography are presented descriptively. The ma-

terial presented here is taken directly from standard texts, and

represents a paraphrase of descriptions from these sources,

together with a commentary which is interpolated for clarifying

the usage of certain technical terms.

Maps

From a topological point of view, a cartographic map is defined

as a mapping function from ordinary Euclidean three-space to

itself. A mapping that is pointwise one-to-one (bi-unique),

continuous, and having a continuous inverse (bi-continuous) is

known as a homeomorphism. All of the usual cartographic

mappings, Mercator, transverse Mercator, polyconic, and similar

mappings, are examples of homeomorphic mappings.

1



Cells

The elementary objects of combinatorial topology are cells.

The Euclidean n-sphere is defined as the point set

2 x? = 1 ; i
= 1 n

An open n-cell is any homeomorph of the interior of this

sphere, the set of points

2 x? < 1 ; i
= 1 , n

A homeomorph of the closed n-sphere is called a closed n-cell.

At this point some clarifying remarks are interpolated. Cells

defined as closed cells are sometimes called nonsingular. Cells

may be defined in such a way that their boundaries are singular,

that is the mapping which defines the boundary cells may be

merely continuous, and not one-to-one. Such cells will be

referred to as singular cells. In figure 1-1 , the diagram at the left

is a 2-cell with a boundary having a single singular point. In the

diagram on the right, the boundary contains a singular 1 —cell.

One may regard each of these diagrams as a result of a

continuous deformation of a regular 2-cell which brings some

set of boundary points into coincidence at the singular

boundary element of the deformed cell.

Oriented Cells

Two orientations may be established for any cell. Formally, an

oriented cell is distinguished from an unoriented cell by

associating with the cell identifier an algebraic sign (+, — ). A
0-cell is oriented arbitrarily. A 1-cell is oriented by choosing

one of the two impossible orderings of its boundary 0-cells. A
2-cell is oriented by selecting one of the two possible cyclic

orderings of three distinct points on its boundary. Formally,

then, a cell requires a triple for its complete representation:

(dimension, sign, identifier) (3)

In the formal representations adopted in ARITHMICON, these

three elements may be represented implicitly, as in the

following example. The pairs

(-1,1)

(2,1)

imply only relative dimension, and may serve equally to

represent a relation between (0, 1) or (1, 2) dimensional pairs.

In the first case, the pairs represent the 1-cell 1 and its

boundary 0-cells —1 and 2. In the second case, the pairs serve to

represent two 1-cells on the boundary of a given 2-cell. The

elements of an incident pair will be known respectively as

(boundary, coboundary) (4)

In figure I-2, a 2-cell with three 1-cells and three 0-cells on

its boundary is shown. The list of incident pairs of ordered cells

is displayed in association with the figure.

Figure 1-1

Examples ot homeomorphs which are 2-cells abound in

ordinary geometry. The plane triangle, either as a closed or open

cell, is the homeomorph of the interior and boundary of the

unit circle. Any plane polygon together with its interior forms a

closed 2-cell. Any closed polygon on the sphere bounds an open

2-cell on the sphere.

The homeomorphisms defining cells induce relations of

incidence between cells and their boundaries. These relations

will be represented as ordered pairs of cell identifiers:

for 0-cells and 1-cells, and

(cV 1

)

(c'.c
2

)

(1]

(2)

for 1-cells and 2-cells. The convention adopted here places the

cell of lower dimension first in the pair.

Figure I-2

The associated incident pairs are

(-1, a), (2, a), (-2, b), (3, b), (-3, c), (1, c)

(a. A), (b,A), (c,A)

(0-cells, 1-cells)

(1-cells, 2-cells)



Complexes Chains

A complex is a cellular structure formed according to the

following set of recursive rules:

• A zero-dimensional complex (a 0-complex) is a collec-

tion of O-cells.

• A one-dimensional complex (a 1 -complex) consists of

a O-complex (known as the 0-skeleton) together with a

set of 1 -cells satisfying the conditions: Each 1 -cell is

bounded in the 0-skeleton, and each 0-cell of the

skeleton is on the boundary of some 1 -cell of the

complex.

• A two-dimensional complex (a 2-complex) is a 1 -com-

plex (known as the 1 -skeleton) together with a

collection of 2-cells satisfying the conditions: Each

2-cell is bounded in the 1-skeleton, and each 1 -cell of

the skeleton is on the boundary of some 2-cell of the

complex.

An illustration of a simple 2-complex and its representation in

terms of incident pairs is given in figure I-3.

A chain is a collection of cells of the same dimension. A chain

may be represented by a set of symbols in the following way. If

the collection is, for example, the set of 1 -cells, selected from

the set of n
t

1 -cells,

C=(ci cm ) ;m<ni

then the chain, C, is represented as a vector,

(5)

C = (x 1# . . . , x ni ) ; n
s

= Number of i-ceils (6)

The x, are either all signed integers or all integers mod 2.

This principle obviously applies to chains of any dimension,

and is obviously equivalent to representing a chain as its

characteristic function over the set of all cells of the specified

dimension.

Chain addition is carried out component by component. In

the case of nonoriented cells the addition is interpreted mod 2.

In the oriented case the addition is interpreted as addition of

signed integers.

(0, 1) dimension:

(1, 2) dimension:

(a, 1), (a, 5), (a, 2), (-c, 5), (-c, 4),

(-c,3),(-d, 1),(d,4),(-b,2),(b,3)

(4, A), (1, A), (-5, A), (5, B), (-2, B),

(-3, B)

Figure I-3

It is simple to verify that the structure in the figure above

satisfies the conditions of a complex. The 0-skeleton is the set

of four 0-cells,

(a, b, c, d)

and each 1-cell of the set (1, 2, 3, 4, 5) has its boundary points

in this 0-skeleton. Each 0-point is on the boundary of one of

the 1 -cells of the set. The pair of 2-cells is each bounded in the

1-skeleton, and each 1-cell of the skeleton is on the boundary of

one of the 2-cells.

These relations imposed on a cellular complex form the basis

of the first step in editing a map model. As indicated, the

verification of the complex rule is a simple algebraic procedure.

Boundary and Coboundary Operators

It can be seen from the representation of the incidence relations

among oriented and nonoriented cells that the relation for the

case of nonsingular cells can be represented by its characteristic

function. In the nonoriented case, this characteristic function is

defined to be equal to one for pairs that are incident, and zero

otherwise. For oriented cells, the characteristic function takes

on three values, zero for pairs not incident, one for pairs having

the same orientation, and minus one for pairs having opposite

orientation. It will suffice at this point to ignore the case in

which there are singular cells, since the actual representation

used in ARITHMICON will not be a conventional matrix

representation.

Whatever form the representation of the incidence relations

may take the relations will be denoted by a set of four

operations, Eq, E°, E\, and E?. It will suffice to define the last

of these:

The operator, Ef operating on a cell or on a cell chain of

dimension 1, is defined to be the collection of 2-cells

incident with any of the cells of the chain.

Thus

E?C J

(7)

is the coboundary of the chain C 1

.

The remaining operators may be defined by merely

changing the appropriate dimension numbers in the

foregoing definition. In this definition it is understood

that the boundary or coboundary chains thus formed are

added according to the appropriate mode of addition of

cell chains as previously described.



The following example will sufficiently explain the interpre-

tation of these operators. In figure 1-4,

Ej (1) = (1,1,1) . (8)

Ej (1,0, 1) = (1, 0,1) + (1, 1,0) = (0,1,1) (9)

3

Circuits, or Cycles

The terms "circuit" and "cycle" are used synonymously. A cell

chain is a circuit if its boundary is null and if no subchain has

this property. Any chain having a null boundary is either a

circuit or a set of circuits. For example, the boundary of a

nonsingular 2-cell is a 1-chain that is a 1-circuit.

The terms "cocircuit" and "cocycle" are also used synony-

mously. The definition is analogous to that of circuit. A 1-chain

is a 1 -cocircuit if its coboundary is null and if no subchain has

this property.

The following examples illustrate these concepts. The

illustration in figure I-5 represents a tetrahedron. First consider

the cells to be nonoriented.

Ej(1, 1, 1, 1) = (0,0, 0, 1, 1, 1) + (1,0, 1,0, 1,0) + ...

... (0, 1, 1, 1,0, 0) + (1, 1,0,0,0, 1) =

(0, 0, 0, 0, 0, 0)

E?(1, 0,0,0, 1, 1) = (0, 1,0, 1) + (0, 1, 1,0) + (0,0, 1, 1)

= (0, 0, 0, 0)

Efctt, 1, 1, 1) = (1, 1, 1,0, 0,0) + (0, 1,0, 1,0, 1) +

... (0,0, 1, 1, 1,0) + (1,0, 0, 0, 1, 1) =

(0, 0, 0, 0, 0)

Figure I-5

Manifolds

A two-dimensional manifold is a 2-circuit which, in

addition, satisfies the condition that each point has a

neighborhood homeomorphic to a flat disk. The condi-

tions stated imply that—

1. Each 1 -cell of a cellular manifold is incident with

exactly two 2-cells.

2. At each 0-cell, the incident 1 -cells and abutting 2-cells

form a chain of alternating 1 -cells and 2-cells, and this

chain is a simple cyclic chain. This condition will be

expressed by stating that the coboundary of each 0-cell

is a cocircuit.

Manifolds defined in this way are called closed manifolds.

The term closed is used in the same sense as that intended when

we speak of closed surfaces, such as the sphere. The closed

manifold has no one-dimensional boundary.

A geometric object obtained by removing disjoint 2-cells

from a closed manifold is known as an open manifold. For

strict regularity it is required that the boundary of this

manifold consist of nonintersecting 1-circuits. An open

manifold can be transformed into a unique closed

manifold by replacing the removed disks.

The tetrahedron, figure I-5, is a two-dimensional manifold.

Its boundary is null, as may be verified by the computation

illustrated. There is a countably infinite set of nonhomeomor-

phic two-dimensional manifolds. Common examples are the

sphere, the torus, the Klein bottle, and the projective plane.

These are each closed manifolds. Examples of nonhomeo-

morphic open manifolds are the Mobius strip, the disk, and

the annular ring.

Orientable Manifolds

The concept of orientation has already been defined for cells.

An oriented two-dimensional manifold is a manifold for which a

cell orientation may be chosen so that each 1 -cell is oriented

once positively and once negatively with respect to the pair of

incident 2-cells.

There is a very simple algorithm for determining whether or

not a given manifold, specified by a collection of incident pairs

of cells, is or is not orientable.

First, choose a 2-cell arbitrarily. To establish a fixed

convention, orient the 1 -cells on the boundary in such a way

that when the boundary is traversed in the counter-clockwise

direction, the interior of the bounded 2-cell lies to the left. Each

1-cell of the bounding 1-circuit is assigned a positive orientation.

Next, choose any 2-cell having 1-cells in common with the

first chosen 2-cell. The 1-circuit bounding the newly chosen

2-cell is now oriented in such a way that the already oriented

1-cells are negatively oriented with respect to this 1-circuit.

Such a choice may not be possible. In this case, the manifold is

not orientable.

If the second chosen cell can be consistently oriented with

respect to the negatively oriented 1-cells, the remaining 1-cells



of the bounding 1-circuit are oriented positively with respect to

this circuit.

The procedure continues, choosing successive 2-cells having

boundary 1 -cells in common with the already oriented 1 -cells. If

every 2-cell can be oriented to satisfy the conditions stated in

the preceding paragraph, the manifold is orientable.

Fusion and Subdivision of Cells

A nonsingular 1 -cell has distinct bounding 0-cells. If a third

O-cell is chosen on the 1-cell, it is necessarily between the

bounding 0-cells of the original 1-cell. Removal of this cell from

the 1-cell leaves a pair of 1 -cells having a common boundary

O-cell. By continuing to subdivide the cells thus obtained, the

original 1-cell may be partitioned into an arbitrarily large

number of 1-cells and boundary 0-cells.

Counting the number of 1-cells and 0-cells of the original

nonsingular 1-cell there are two 0-cells and one 1-cell. A formula

connecting these numbers defines an invariant for a one-dimen-

sional complex:

X
1 =n -nj (10)

This number is known as the characteristic of the one-dimen-

sional complex.

The characteristic defined above is invariant under the

process of subdivision described in the first paragraph above.

Each chosen O-cell on the complex, when removed, leaves a pair

of 1-cells replacing the subdivided 1-cell. The number of 0-cells

and the number of 1-cells each is increased by one.

For a closed one-dimensional manifold, or 1-circuit, the

characteristic has the value 0. For a simple 1-cell, the charac-

teristic has value 1. Beginning with a 1-cell, which has char-

acteristic value 1, and adding 1-cells by attaching one end to

one of the 0-cells of the boundary, and adding the necessary

0-cells to complete the boundaries of the attached 1-cells, it can

be seen that the characteristic value is unaltered by this process.

Since the 1-cells attached are each accompanied by one

boundary O-cell, the 1-cells and 0-cells are added in pairs. A
structure formed in this way is known as a tree.

On the other hand, suppose one begins with a tree, which, as

has just been shown, has characteristic value 1. Adding to this

complex a single 1-cell, having both bounding 0-cells already in

the complex, reduces the characteristic value by 1. Each such

added 1-cell equally reduces the characteristic value. Since each

such added 1-cell forms a closed loop independent of any

previously formed loop, one may determine the number of

closed loops or 1 -circuits simply by counting 0-cells and 1-cells.

Thus, the value of the characteristic is zero for a 1 -complex

containing a single circuit. Denoting the number of independent

1-circuits by /u.

li=1 -x 1

(11)

X 1 = 4-5= -1

M= 1 - <-1) = 2

Figure l-b

We next turn to the partition of 2-cells. Any 2-cell with a

nonsingular boundary may be partitioned by a 1-cell having its

boundary 0-cells on the boundary of the 2-cell, and itself

interior to the 2-cell. The invariant characteristic for two-dimen-

sional complexes is

no
— n l

+ n2 (12)

The partition of a 2-cell by a 1-cell as described above increases

the number of 2-cells and the number of 1-cells, each by

unity. The insertion of the boundary 0-cells of the introduced

1-cell onto the boundary of the 2-cell has no effect on the

characteristic. The characteristic of the two-dimensional com-

plex is therefore invariant under partitions.

Fusion

Any O-cell on a 1 -complex which is incident to exactly two

1-cells may be fused with these 1-cells to form a 1-cell. This

procedure of fusion is essentially inverse to the procedure of

partition of such a cell. Obviously, the characteristic value is

unaltered by this operation. In the case of 2-cells, any pair of

2-cells which share a common 1-cell on their boundaries may be

fused, provided that their boundaries have no other points in

common, and of course, neither of the 2-cells has an interior

point in common. Such a fusion results in a new 2-cell which is

the union of the common 1-cell and its incident 2-cells.

Obviously, the removal of the 1-cell and the associated

reduction in the number of 2-cells by one, leaves the character-

istic value of the complex unaltered. Figure I-7 illustrates the

fusion of a pair of 2-cells.

Figure 1-6, illustrates the determination of the number of

1-circuits of a 1-complex or linear graph. Figure I -7



The preceding paragraphs show how the number of 1 -circuits

of a two-dimensional complex may be determined from the

characteristic of the 1 -skeleton. From the fact that each 2-cell

has a bounding 1-circuit in the 1-skeleton, the number of

independent bounding 1 -circuits cannot exceed n 2 . But the

number of independent 1 -circuits bounding 2-cells cannot

exceed the number of 2-cells less one, since the fact that the

two-dimensional manifold is a 2-circuit means that there is a

linear relation holding on the set of boundary 1 -circuits of these

cells; in fact, their sum (mod 2) is zero. There are therefore

exactly n 2
— 1 independent 1 -circuits bounding the 2-cells of

the manifold. The number of nonbounding 1 -circuits may
therefore be determined by subtraction. By convention, the

number of nonbounding 1 -circuits is known as

R i
- 1 = ju - (n 2 - 1 ) = 2 - x

1 — n2 ; from which

Ri=3- X
2

(13)

For an open two-dimensional manifold a closely related

formula may be obtained by a slight modification of this

method. Since for an open manifold some 2-cell must have been

removed from a closed manifold, it follows that the remaining

2-cells must have linearly independent boundary 1 -circuits. The

number of bounding 1-circuits is therefore equal to n 2 . It

follows from this that the value of R! for an open two-dimen-

sional manifold is given by the formula

Ri=2-x2
(14)

The fundamental theorem of the combinatorial topology of

the closed two-dimensional manifold states that any two

manifolds, both orientable, or both nonorientable, and having

the same characteristic are homeomorphic.

Map of a Closed Two-Dimensional Manifold

In standard texts on combinatorial topology, the following

fundamental facts about 2-manifolds are shown. Every closed

2-manifold can be set into one-to-one correspondence with the

points of a convex polygon in the plane, in such a way that each

interior point of the polygon is the correspondent of a single

point of the manifold, and the boundary points which corre-

spond to the edges of the polygon may be made to

correspond by pairs, and such pairs each correspond to a

single point of the manifold, and finally the vertices of the

polygon as a set are each the correspondent of one and the same

point of the manifold. The number of edges of the polygon is

equal to twice the number of nonbounding 1-circuits of the

manifold.

This theorem is important in computerized cartography

because it illustrates the way in which an anomalous manifold

may be inadvertently constructed by faulty identification in a

model. For the purpose of cartographic interpretation, this

theorem is best explained by citing examples.

The first example, shown in figure l-8a, is a representation of

the torus, or anchor ring.

1 c » 3 d -

A / >k

a

2

i

*-—

^

b

—> ^^

2

b

i c 3 d i

Figure l-8a

Figure l-8a represents a triangulation of the torus, and will be

analyzed according to the principles already explained in the

text. The first part of the procedure is to determine whether the

manifold represented is or is not orientable. This example may

be made clearer by the introduction of a closely related

manifold, having a representation differing only slightly from

that of the torus, namely the Klein bottle. This is shown in

figure l-8b.

1 c 3 d 7

i

a
\ ^s.

\ b

2 2

> k ^\ ^ '

b a

i
c: 3 ii 1

Figure l-8b

Note that in each case the triangulation of the rectangle is

identical. The only difference between the figures is in the

identification of the edges on the right and left of the figure.

Since the interior of the rectangle is known to be orientable, it

remains only to consider the segments on the edges. Thus for

figure l-8a, the edges are oriented once positively and once

negatively relative to a 2-cell interior to the rectangle, that is in

one case there is a positively oriented 2-cell on the left, and

again on the right of the segment. This being true for the 1-cells

on the boundary, and necessarily true for the 1-cells interior to

the rectangle, the manifold represented is orientable. On the

other hand the cells a and b cannot be so oriented in figure

l-8b, since the cells a and b as shown have positively oriented

cells on the left hand only when oriented as indicated in the

diagram. The Klein bottle is therefore not an orientable

manifold.

Each of these manifolds has the same characteristic, 0, and

the number of independent nonbounding 1-circuits is in each

case 2. The essential difference is the nonorientability of the

Klein bottle, and the orientability of the torus.



Identification

The last examples illustrate the principle of identification. A
difference in the identifications of cells is capable of producing

a radical alteration in the interpretation of a diagram. This

phenomenon is the source of a relatively large number of errors

in coded maps.

The most common form of misidentification is that in

which two or more 0-cells are identified under a common
identifier. The topological structure induced by this identifica-

tion is illustrated in figure 1-9.

Figure 1-9

The complex obtained in such a case is not strictly a manifold,

since it fails to have a flat two-dimensional neighborhood at the

point 1. The neighborhood consists of a pair of disks, joined at a

common point. A simple map can be drawn by modifying the

map of the annular ring, as shown in figure 1-10.

Figure 1-10

When this singular manifold is joined to a disk with two holes,

one obtains the equivalent structure shown in figure I-9.

It will be seen that there is no possibility for misidentifica-

tion of segments, in the sense that two distinct geometric

segments are given a common identifier. There is, however, the

possibility that geometrically distinct 2-cells are given a com-

mon identifier. The means of detecting such an anomaly will be

described in the section "Topology of Maps."

A commonly occurring error is one in which the boundary

segments of a 2-cell are traced in the wrong order. This leads to

an interchange of the identification of a pair of 0-cells on the

boundary, and a Mobius strip is inadvertently created. This kind

of structure is illustrated in figure 1-11.

1\

a
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X
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2

b a b

|

4

Figure 1-1

1

The cellular structure shown should be an annular ring, but

has been converted to a Mobius strip by the misidentification

created at the time of tracing. If the domains adjacent to the

ring were identified, neither would have a boundary, but their

union would be bounded by a simple circuit, the same 1 -circuit

that bounds the Mobius strip. The entire structure is therefore

equivalent to a projective plane.

The DIME Representation of a Segment—Duality

A two-dimensional manifold is characterized by an important

form of symmetry in its incidence structure. This form of

symmetry is known as duality. Pairs of incident cells have

already been denoted as paired elements in a relational scheme,

(relative, correlative), as in (boundary, coboundary). Boundary

and coboundary are dual aspects of one and the same incidence

relation. Cells are also subject to a duality relation. On a

two-dimensional manifold, a 0-cell is a dual to a 2-cell, and

Tcells are dual to 1 -cells. Thus, given a valid incidence scheme

representing a cellular structure on a two-dimensional manifold,

there is a dual structure defined by exchanging relative and

correlatives in the incidence relations, while interpreting cellular

objects as dual cellular objects entering into these incidence

relations. Because of this geometric fact, it is possible to

represent each 1 -cell of a cellular structure of this kind by

means of a quintruple

(s, a, b, c, d)

satisfying the dimensional schema

(1,0,0,2,2)

and geometrically interpreted as a directed 1 -cell assoc ! -

ated with an orientation schema

(s, From, To, Right, Left)

which in terms of oriented cells is equivalent to a sign

schema

(+, -, +, - +)

A simple example will illustrate this principle. Figure 1-12

shows the map of the tetrahedron. The DIME representation of

the incidence relations is indicated in the figure.



DIME segments
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Figure 1-12

(1. 3,4, 1.2)

(2, 2,4, 3,1)

(3, 1,4, 2,3)

(4,3,1, 2,4)

(5, 2,3, 1.4)

(6, 1,2, 3,4)

Dual DIME segments

(T, 1,2,4,3)

(2*, 3, 1,4,2)

(3*, 2,3,4, 1)

(4*, 2, 4, 1,3)

(5*, 1,4,3,2)

(6*, 3, 4, 2, 1)

In this case, the structure is self-dual; that is, there is a 1-1

correspondence between cells of the original complex and cells

of the dual which preserves incidence relations.

The segments s and the transformed segments s* represent

just one form of the representation of a complex on a manifold.

A second version is obtained by choosing opposite orientations

of the 1 -cells. This representation is expressed by the transfor-

mation

(s, a, b, c, d) -* (s\ b, a, d, c) (15)

The opposite choice of orientation of a 1 -cell can be

interpreted geometrically as viewing the manifold from the

opposite side. A similar interpretation may be made of

negatively oriented 0-cells. This convention permits the repre-

sentation of a nonorientable manifolds by means of a DIME
code. The representation of the projective plane in figure 1-13 is

an example.

Figure 1-13

The DIME code for this manifold consists of the single singular

segment

s; (a, —a, b, —b)

When one determines the boundary of the 2-cell b, one obtains

the segment s, similarly oriented, twice. The boundary is

therefore 2 s. Evidently, the segment is self-dual.

Interpretation of a DIME Segment. From the dimensional

scheme of a DIME segment, the fourth and fifth fields

are two-dimensional objects. It will always be assumed

that these objects are topological^ equivalent to flat

disks, or 2-cells. If it is desired to represent nonorientable

objects in terms of DIME segments, this can be done only

by the introduction of singular segments.

The geometric object corresponding to a two-dimen-

sional DIME code must, in many cases, be constructed.

The method of representation allows a 2-cell to contain

other 2-cells in their interior, and so on to some finite

degree of nesting. The DIME code identifier is always

interpreted to be a complete 2-cell containing no holes, or

alternatively containing holes which are filled by other

identified 2-cells.

Although the 2-cells thus defined are orientable open

manifolds, it does not follow that the structures formed

by fusion of 2-cells will themselves be orientable. One

may encounter coding errors which wrongly imply that a

map structure formed of fused 2-cells is not orientable.

Thus a test for orientability is required.

A procedure for obtaining the complete 2-cell as a

fusion which replaces holes is provided among the

examples of data retrieval.

Neighborhoods

The basic editing procedures are directed toward the verification

of the fact that each vertex has a fundamental neighborhood

homeomorphic to a 2-cell, if the vertex is interior to the

manifold, and a neighborhood homeomorphic to a hemi-disk, if

the vertex is on a boundary of the manifold.

In interpreting DIME segments related to a given area code,

the code itself is always interpreted as an identifier of a flat

two-dimensional manifold, that is, as a disk, or a disk with

holes. Since such a structure can be made to correspond in a

unique way to a disk, simply by replacing the holes by simple

open disks, all of these structures may be regarded as simple

disks without any loss of generality. It is only required that the

structure internal to any such disk be strictly accounted for.

While this interpretation may be made for the fundamental

areas distinguished in the model, the result of such an

interpretation is not necessarily a consistent geometric object.

The consistency is established only through the process of

applying the constraints that the cellular object resulting from

such an interpretation of the model satisfies the conditions on a

complex, and in addition, the conditions on a manifold.

Any encoded fundamental area must satisfy the condition

that it is a disk or that it is a disk with holes. In turn, the holes



themselves must represent encoded areas. To simplify matters

for the purpose of discussion, the map itself may be considered

to be a disk. In this case, the fundamental neighborhood of any

0-cell must itself be a disk. In case the disk has holes, the areas

corresponding to the interior of these holes must be analyzed.

The steps in building up a fundamental neighborhood of a

vertex begin with the identification of the individual cells

which, when fused together, form the neighborhood. In the

section dealing with retrieval of neighborhood cells, the method

of assembling these ceils was illustrated. The illustrations given

were purposely simplified. Actually, one must allow for the

presence of holes in the neighborhoods assembled by the given

operator sequences. This requires that the internal loops of the

neighborhood boundary be identified. The coboundaries of

these neighborhoods must be adjoined to the collection of

2-cells to be fused. These adjoined 2-cells, may themselves have

holes. The finite character of the model assures us that the

procedure of restoring the removed 2-cells to the neighborhood

will finally terminate. The end result should be the assembly of

a simple disk.

What is assumed about the interpretation of an area code as

an identifier of a 2-cell is justified by the procedure described

above. The 2-cell mentioned in a DIME segment refers to the

2-cell obtained after restoring any and all of the removed holes.

Figure 1-29 illustrates the types of internal holes that may be

encountered. For a discussion of the procedure for retrieving

the list of 2-cells interior to a given 1-circuit bounding a disk,

see the example on the use of the procedure, HOMOL, and the

discussion of homology, p. 27.
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Figure 1-15

These two operations identify the collection of cells whose

union forms the open neighborhood of the 0-cell. This is the

smallest open neighborhood of the vertex definable in terms of

the cell structure. It should be noted that this system of

neighborhoods covers the entire cell structure, but that indi-

vidual points are not necessarily in one-to-one correspondence

with the neighborhoods of the system. One and the same

neighborhood may be the fundamental neighborhood of a finite

number of 0-cells.

The closures of these neighborhoods are obtained by

adjoining the point sets defined by the following operators:

e
1 E^C2

B° = E?B 1

The closed neighborhood is shown in figure 1-16.

(18)

(19)

Fundamental Neighborhood of a O-Cell

The sequence of operations resulting in the collection of the

cells forming a fundamental neighborhood of a 0-cell is now
presented. Beginning with the 0-cell, c°,

C 1 = E£c° (16)

This one-dimensional coboundary is shown in figure 1-14.

r-1

Figure 1-14

(-)s' 1-cells

I ( • ) B° - O-cells

Figure 1-16

The next neighborhood to be constructed is the closed

neighborhood of a 2-cell, and the smallest open neighborhood

containing this closure. Beginning with the 2-cell, the following

operator sequence will assemble the cells making up the closed

neighborhood:

The two-dimensional coboundary of the 1 -chain

C2 = E\C l

(17)

B 1 =ElC2
(20)

is shown in figure 1-15. B° = E?B ]

(21)
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The union of these last two sets, together with the original

2-cell, constitutes the closed 2-cell, the smallest closed neighbor-

hood containing the cell itself. This neighborhood is represented

by the closed central rectangle in figure 1-17.
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Figure 1-17

1-cells

0-cells

The smallest open neighborhood containing the closed neighbor-

hood of a 2-cell is obtained by the following operators:

C 1 =e£b c

C2 = E?C'

(18)

(19)

The neighborhood obtained by adjoining these point sets to the

closure of a 2-cell is the smallest open set containing the closed

2-cell. Note that the cellular structure of the closure of the

fundamental neighborhood of a 0-cell is precisely dual to the

structure of the open neighborhood covering a 2-cell and its

boundary.

The examples of neighborhoods shown above have been

purposely chosen to be as simple as possible. Some idea of the

complexity of a neighborhood will be presented in the section

on the topology of maps. It is unnecessary here to give a special

example of the fundamental neighborhood of a 1-cell, since this

neighborhood is simply the union of the fundamental neighbor-

hoods of the pair of bounding 0-cells.

Linear Graphs

A one-dimensional complex is also known as a linear graph. A
wide diversity of terminology exists in connection with graphs.

The 0-cells of the complex are known as vertices, nodes, or

endpoints. The 1-cells of a graph are known as segments, edges,

or arcs. A graph which contains an arc connecting each pair of

0-cells is said to be connected.

For representations of 0-chains, mod 2, a 0-circuit consists

of a pair of 0-cells. By convention the boundary of such a pair is

the sum, mod 2, of the coefficients, which in this case each equal

1. For representations using signed integers, a 0-circuit consists

of a pair of 0-cells of opposite orientation. Thus, in either case

the boundary is zero or null. The sum of any number of

0-circuits is a 0-circuit.

A 0-circuit is a bounding 0-circuit if it is the boundary of a

1-chain, and all other 0-circuits are nonbounding. For a graph

that is connected, there are no nonbounding 0-circuits. If a

graph is not connected, the maximal connected sets of cells are

known as components. The number of components is related to

the number of independent nonbounding 0-circuits. The num-

ber of independent 0-circuits is denoted by R . There are

R — 1 components in a linear graph.

The relation between the characteristic of a connected graph

and the number of independent 1-circuits is specified in

equation (11). This equation is applied separately to each

component of the graph. Although we can determine the

number of independent 1-circuits from the two characteristics,

R and Rj, further analysis is required to identify the 1-cells

not in any proper 1-circuit, the so-called acyclic segments.

In order to simplify the analysis of graphs, each graph will be

first transformed by eliminating any 0-cells or vertices of index

2. Such a graph will be said to be reduced. This transformation

is identically that already discussed under the subject of the

fusion of 1-cells having a single boundary 0-cell common to

their boundaries. Since this transformation does not affect the

characteristic of the graph, the result is to provide a graph which

together with the known condition of being reduced, has

invariant numbers of 0-cells and 1-cells.

For the purposes of analytic cartography, the aim of this

graph analysis is to provide a concise characterization of the

graph. The method decided upon is to specify for each graph a

numerical code consisting of the following sequence of integers:

c; (n lf n ,n,a) (20)

The term /u is redundant in this list but is included to save an

editor from making the calculation of its value; a is the number

of acyclic segments. The symbol c denotes the particular

component. Figure 1-18 illustrates a graph from an actual urban

map and its graph code.

CODE
1; (15, 14, 2, 6)

Figure 1-18



11

The next example, figure 1-19, illustrates the 1-skeleton of

a fundamental neighborhood. This example is included because

of the fact that the analysis of such a graph is a fundamental

part of every edit of a 0-cell or vertex neighborhood.

Code

1; (6,4,3,0)

Figure 1-19

An important structure that will be frequently encountered

in the analysis of a neighborhood is the disk with holes. Figure

1-20 illustrates a simple case and the associated graph code.

In this figure, the oriented 0-cells are interpreted as points in the

surface viewed from the opposite side of the surface. There are

paths from a positively oriented 0-cell to its negatively oriented

version on a nonoriented surface. This fact has led to nonorient-

able surfaces being called one-sided surfaces. The DIME code for

this figure, and its dual figure, is shown below:

1 (1.3, 1,3) 1*;(1,3, 3, 1)

2 (1,2,3,2) 2*;(3, 2, 2, 1)

3 (1,4,2,1) 3*; (2, 1,4, 1)

4 (-3,2,2,-1) 4*;(2, -1,2, -3)

5 (2,-4,3,-1) 5*;(3, -1,-4, 2)

6 (4, -3, 2, -3) 6*;(2, -3, -3,4)

The DIME segments and the dual segments can be verified

by inspection of figure 1-21.

Code

1;(2, 1,2,0)

2;(1, 7, 1,0)\

Figure I -20

A more complete example on the projective plane will be

used to illustrate the method of representing a nonorientable

manifold by means of a DIME code. The example is based on

the structure in figure 1-21 which shows a map of the Mobius

strip, closed by the insertion of a disk.

TOPOLOGY OF A MAP

The present section deals with the interpretation of topological

ideas in cartography. It has already been pointed out that the

graphic and cellular structures encountered on actual maps are

often singular. For example, the boundary of the disk, shown

below, is singular, and moreover the disk itself does not

conform to the definition of a manifold. It must be regarded as

a singular manifold, the singularity being the double point on

the boundary. At this point, there is not a neighborhood

homoemorphic to a hemi-disk. On the contrary, the neighbor-

hood is disconnected into two components by the removal of

the singular point.

As has already been pointed out, cellular structures of this

kind cannot be represented by the usual form of incidence

matrix. However, such cells can always be subdivided, in the

way already explained, so that the resulting complex can be

represented by a set of incidence matrices. The example in

figure I-22 shows a map composed of singular cell structures.

Figure I-22
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The one- and two-dimensional characteristic values for the

individual disks are also computed for the purpose of illustra-

tion.

The DIME code for the map shown in figure- I-22 is the

following:

1: (1, 1,a, b)

2: (1, 1, a, b)

3: (2, 2, c, b)

4: (2, 2, c, b)

Because of the singularities of the cell structure, the left-hand

figure represented by segments 1 and 2 is topological^

indistinguishible from the right-hand figure represented by the

segments 3 and 4. That is, there is a homeomorphism induced

by an exchange of the label pairs (1, 2), (a, c), and (b, b). Not

only are the cellular structures equivalent, but they are

represented by equivalent segment pairs. Such cases can be

distinguished only by use of the metrical data associated with

the 1 -cells. This data permits one to distinguish the right- and

left-hand figures of the map, and to see that the disk c contains

a hole, b. The areas marked with the symbol b, represent a disk,

with a bulge and some holes.

The two-dimensional characteristic of the disk a is equal to

one. The figure may be regarded as being obtained by coalescing

two disks at a point on their boundary. This reduces the number

of 0-cells of any triangulation by one, and hence the character-

istic of a pair of disks which equals two is reduced by unity. On
the other hand, the disk c has a hole, b. The value of the

characteristic is equal to zero. The figure may be regarded as the

result of coalescing two boundary points of a nonsingular disk

to a single point. This reduces the characteristic by unity, and

gives the value zero as a result. The area b is a disk with three

holes, a, a, and c, together with a bulge into the hole c. For each

component of the boundary of the figure, the one-dimensional

characteristic is the same, namely, minus one. Each component

is therefore a pair of loops joined at a single point. These

examples cover the phenomenology as far as the cyclic graphic

structure is concerned. It remains to consider the acyclic

structure of the graphs. Since the disks are assumed to be flat,

or genus zero, every graph having circuits interior to the disk

either bounds or is part of a boundary of some interior hole. On
the other hand, the acyclic structure is not properly a part of

the boundary.

Any tree structure internal to a disk boundary may be

regarded as a part of a singular boundary, obtained by

coalescing 0-cells and 1 -cells of a nonsingular boundary. Such

singularities are associated with corresponding singularities of

the DIME segments, indicated by the presence of identical codes

in the 2-cell positions of a segment. Such a singularity will be

referred to as a singularity of the second kind.

Boundary segments

1,(1,6, b, a)

2; (6, 5, b, a)

3,(5, 1,b, a)

Interior segments

4; (5, 6, a, a)

5; (1,2, a, a)

6; (2, 3, a, a)

7; (2, 4, a, a)

Figure I -23

Pseudo-Dual Graphs

The presence of cells with singular boundaries complicates the

analysis of conditions at a vertex. For this reason, no attempt is

made to construct an actual dual graph during the editing

procedure. Instead, a pseudo-dual graph is drawn. The proce-

dure for constructing this graph is illustrated in figure I-24. This

illustration shows the utility of the pseudo-dual in providing a

visual indication of a sense reversal of the sides of a segment.

The reversal is indicated by the presence of the bow tie in what

would otherwise be a simple loop.

In the actual dual as analyzed in the internal chaining

procedure, the reversal is detected as a segment negatively

oriented in the chain. However, the graphic indication conveys

this information more directly.

Drawing a pseudo-dual in this way requires a preliminary

ordering of the 1 -cells at the vertex. This ordering is cyclic and

is induced by the angular positions of the individual segments.

Once the segments have been ordered, the chain may be drawn

as long as the successive segments have one and the same 2-cell

on their common coboundary. When this condition does not

hold, the chain cannot be continued.

There is an obvious cell mapping from the pseudo-dual to

the dual. The mapping is possibly singular.

The following example of the use of the pseudo-dual is

somewhat more complex. Figure I-25 illustrates a vertex with

singular segments. The original code is defective and the
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DUAL

Figure 1-25
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pseudo-dual consists of a single acyclic segment. The corrected

version is also shown in the figure.

The difference between duals and pseudo-duals is also

indicated. The associated dual is displayed adjacent to each of

the pseudo-duals. By tracing the segments of the pseudo-dual on

the actual dual, one may easily verify that a continuous map of

the pseudo-dual may be drawn on the actual dual. It is quite

evident in this case that the pseudo-dual provides a more direct

indication of the location and kind of error than does the actual

dual.

Boundary of a Cartographic Area

The fact that a cartographic area may be a disk with holes

complicates the editing procedures. For example, figure I-26

shows the results of defective coding of a fundamental

neighborhood of a vertex. As shown in the abstract version, the

neighborhood should be an annular ring. In fact, the outer ring

is broken and, in addition, has a spurious self-intersection. The

fact that the vertex is consistently located relative to the

annular ring is verified analytically by determining first that the

point is interior to the outer ring, and second, that it is exterior

to the inner ring. Of course, the outer and inner rings were first

identified by appropriate analytic procedures.

There is of course no way of knowing that the self-intersec-

tion shown at vertex 703 is spurious. This information is the

result of adjudication from the actual map.

The example, which incidentally is taken from the encoded

map of Jackson, Mississippi, indicates the necessity for complete

analysis of the boundaries of a fundamental region.

Metrical and Topological Inconsistencies

The coordinate descriptions of points, 1 -cells, and 2-cells may

not be consistent with the set of incidence relations among

these cells. The most frequently occurring errors of this kind

result from displacements of points as expressed in terms of

their assigned coordinates to positions outside of their funda-

mental neighborhoods. There are two simple ways of detecting

such displacements. First, a point-in-polygon test may be

made of the position of the point relative to the boundary of its

fundamental neighborhood. Second, a displacement may be

detected by the observation of folds indicated by retrograde

motion of the pseudo-dual relative to its general cyclic

direction.

The first example illustrates detection of a point location

exterior to the boundary of its fundamental neighborhood.

Figure I-27 illustrates a case of this kind. The position of the

point as originally coded is indicated by an asterisk, and the

corrected position is indicated in the same way. Figure I-26
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Vertex displaced exterior to fundamental neighborhood

Vertex repositioned

Figure I -27

Folds

Although a drastic displacement of a vertex may be detected by

the means already described, a point-in-polygon test of the

location of the point relative to the boundary of its funda-

mental neighborhood, it may often be detected by another

means. Such a displacement may cause a fold in the neighbor-

hood of a vertex. Two examples of such folding are shown in

figure I-28.

A fold of this kind will be detected by a retrograde

movement of the pseudo-dual graph relative to its direction of

circulation about the vertex. This movement is different from

the bow tie characteristic which accompanies a side-reversal of a

segment.

Such a retrograde movement occurs because of an inconsist-

ency in the two possible ways of ordering the segments in the

coboundary of the vertex. First, the segments are ordered

according to their angular position at the vertex. Second, they

are ordered by topological position in the coboundary chain.

Inconsistency of these two orderings will produce the retrograde

movement.

Neighborhoods on a Disk

Figure 1-29 illustrates some of the possibilities for singular

neighborhoods on a disk. Each interior point of the disk has a

regular neighborhood consisting of a small disk with center at

the point. On the boundary, the neighborhoods consist of

hemi-disks with the point on the diameter of the hemi-disk. At a

singular point of the boundary, the neighborhood is more

complex. It may be characterized in two ways: first, by the

number of incident 1-cells at the singular 0-cell, and second, by

the number of neighborhood components produced by removal

of the 0-cell from the neighborhood.

The illustration shows a disk with two holes. The first hole is

completely interior to the disk. At the point 1, of the hole h,

there is a neighborhood that is a hemi-disk; similarly for point 2

on the boundary of the disk itself. On the other hand, the point

3 is singular. Removal of this point separates the neighborhood

into two components; this is one-half the number of incident

1-cells, or one-half the degree of the vertex relative to the

incident 1-cells.
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Representative Graph Codes

The following examples represent codes of simple graphs. A
given graph code does not necessarily represent a unique graph;

however, homeomorphic reduced graphs have the same codes.

Each of the following examples represents a graph consisting of

a single component, a situation sufficient for the purpose of

explanation:

Code 1: (1, 1, 1, 0); A simple loop

Code 1 : (2, 1 , 2, 0) ; A double loop

Two examples of folding

Figure I -28
Code 1: (3,2,2, 1); A double loop with a tail, or two

single loops joined by an acyclic 1-

cell

Code 1: (4, 2, 3, 0); Two loops joined by a 1-circuit

Neighborhoods on a disk

Figure I -29
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Code 1: (2, 2, 1, 1); Single loop with a tail

Code 1 : (3, 4, 0, 3); Tree structure

Code 1: (3, 2, 2, 0); Two 1-circuits

Graph Analysis

Every editing procedure of ARITHMICON depends in some way

on the analysis of a characteristic graph. From the discussion of

neighborhoods, it can be seen that the internal structure of a

2-cell may be arbitrarily complex. For this reason, a completely

general system of graphic analysis is necessary.

The analysis of a graph is simplified by the process of

reduction. A graph is reduced by fusing each pair of 1-cells

incident at a 0-cell of degree equal to two. The reduced graph of

any pair of homeomorphic graphs has the same number of

1-cells and 0-cells.

The reduction of a graph is accomplished by a procedure

called CHAINS. CHAINS is an algorithmic procedure operating

on a fixed set of individual data sets. The resulting data set

created is a description of the reduced graph.

CHAINS: Data set

The format for data set description is (index, record)

DIME: (segment, From-node, To-node, left block, right

block)

Essential: (index, 0-cell, multiplicity)

Inessential: (index, 0-cell, multiplicity)

Chain: (pointer to segment)

Flag: (segment, flag = (0 or 1

)

Chain Head: (index, chain number, pointer, initial vertex,

. . . final vertex)

The pointer in Chain Head points to the first segment in

Chain.

In functional notation, the first segment of a chain is

DIME (Chain (pointer (indexCH ))); CH = Chain Head.

The algorithm has the structure shown schematically in

figure I -30.

Initializing a Chain. Set the initial vertex equal to the first

essential vertex having multiplicity ¥= 0. If no such vertex

can be found, exit from the procedure. Initialize the chain

head record. Increment current chain number by 1. Set

pointer equal to current value of chain stack pointer. Set

initial vertex to vertex found in previous step.

Continuing the Chain. Find first segment for which

From-node is end of chain. If none exists, find first

segment for which negative segment satisfies the condi-

tion. Flag segment as chained. Push segment index to

chain stack. Set current end of chain to To-node of last

chained segment.

Testing for End of Chain. Is current end of chain an

essential vertex? If so, set value into chain head record

and push chain head record to chain head stack. Other-

wise continue the chain.

Exit from the chaining procedure for chains on essential

vertices either terminates the chaining procedure or else

there remain chains of inessential vertices. These chains are

necessarily circuits. Since the representation of a circuit

requires at least one vertex, the procedure begins with the

selection of an arbitrary vertex in the list of inessential

vertices. The structure of the program is identical with that

of the program for chaining on initial essential vertices, but

with a different set of tests and procedures.

Initializing the Chain. Choose the first inessential vertex

having nonzero multiplicity. If found, decrement multi-

plicity by 1, and set current end of chain to this vertex. If

none such, the chaining procedure is ended. Set up Chain

Read.

Continuing the Chain. Find the first segment for which

From-node is current end of chain. If none such, then

find first segment for which negative of segment satisfies

the condition. Flag this segment as chained. Push index of

segment to Chain stack. Set current end of chain to

To-node of last chained segment.

Testing for End of Chain. Is current end of chain identical

with initial vertex? If so, chain end has been reached. Set

terminal vertex in chain head record to current end of

chain. Push chain head record to chain head stack.

Otherwise continue chain.
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The second phase of the analysis of a graph, after reduction,

is a connectivity analysis. By simply counting 1 -cells and 0-cells,

the characteristic of the graph may be computed. From the

characteristic, the number of 1 -circuits may be -

determined

directly. However, this simple procedure fails to identify those

cells of a graph which belong to no cycle whatever. These are

the so-called acyclic cells. The identification of these cells is

carried out in a procedure called KIRCHOFF. The procedure,

with only slight modifications, is due to G. Kirchoff, the

originator of this type of graph analysis.

The object of the procedure is twofold: first, to identify the

acyclic 1 -cells of a graph, and second, to produce a graph code

in the format specified for such a code:

Component; (r>i, n ,M. «)

where /u denotes the number of 1 -circuits, and a, the

number of acyclic 1 -cells.

The description of the algorithm begins with a description of

he data sets.

The input data is a list of segments related to their initial

and terminal points. This is the list referred to as the

output of the chaining program, except that the pointer

to the chain stack is not used in the algorithm.

In the course of the analysis, the input record is

extended by adding two fields: first, the component

number in which the segment is placed, and second, a

mark indicating a cyclic or acyclic segment.

In the course of the procedure, an independent count

of the number of independent circuits is made. This count

is compared with the number computed from the character-

istic value as a check on the procedure.

Data sets for KIRCHOFF.
Segment: (From-node, To-node, Component, Cyclic)

Node list: (Node, pointer, M1, M2, segment)

In this last record, M1 and M2 are interpreted as the

multiplicities of the associated node in a corresponding

component.

The structure of the algorithm is shown in Figure 1-31.

Component Initialization. Increment current component

number (initially zero).

Select the first segment not assigned to any compo-

nent (Comp. = 0). Mark the component field with the

current component number. Select the From-node of the

segment as the initial node. Place the node at index

position 1 in the node list. Set the multiplicity, M1(1) = 1.

Set the index pointers, i and j, each to the value 1. If no

segment is unassigned, the procedure terminates.

Component Formation. Test 2 merely compares the

pointers, i and j. If the value of i exceeds the value of j,

control returns to the initialization procedure.

Test 3 is a search for a segment having the node, node

(i), as a From-node. If none can be found the segments are

searched after reversal. If no segment is found, the pointer

i is incremented by 1 and control returned to test 2.

Test 4 is a test for the formation of a circuit by the

last chained segment. The test consists of a search on an

index, k, for a node (k) equal to the To-node of the last

chained segment. For either outcome of the test, the

multiplicity, M1(i), is incremented by 1. If no circuit is

formed, the index, j, is incremented and node (j) is set

equal to the To-node of the last chained segment. On the

other hand, if the node, k, corresponding to the formation

of a cycle has been found, the multiplicity, M1(k), is

incremented by 1, and control passes to the routine

CYCLE. Whenever a new node is added, that is, when no

circuit is formed, the value of pointer (j) is set equal to

the value of i. The value of the segment pointer is placed

in the field, segment (j). Thus, each new node added to

the node list is associated with its antecedent, via the

pointer set equal to the index of the last chained segment.

If a circuit had been formed, the index of the last chained

segment would have been placed in the cycle-forming

segment list.

The condition of the graph at the point where a circuit

has been formed is shown in figure I-32.

Figure I-32

The cycle-forming segment is shown as a dotted line.

Note that each node except for the initial node has a

single antecedent when the cycle-forming segment is

removed from the graph. In the procedure CYCLE, to be

described next, reference will be made to this figure. The

free ends of the graph will be removed in a recursive

procedure PINCH. What remains will be a point set

connected by arcs into a simple loop. In figure I-32, the

segments removed by the procedure PINCH are indicated

by cut marks transverse to the segments to be removed.

The segments remaining will be marked as cyclic in the

cyclic field of the segment record. A segment once

marked as cyclic retains this mark throughout the

remainder of the procedure.
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CYCLE. The structure of the procedure is shown in figure

1-31. The condition of the graph at the beginning of the

procedure is indicated in figure I-32.

The procedure begins by setting M2 = M1 for each

vertex in the node list.

The loop for pinching off free ends is then entered. A
search for a free end is conducted. For any M2 = 1, the

value of M2 is decremented by 1. Now either the related

node has an antecedent in the graph with M2 ¥= or not.

If so, the value of M2 (point (j)) is decremented by 1, j

being the index of the free end. If the node (j) has no

antecedent with nonzero M2, it has a successor satisfying

this condition. This successor is found by searching the

pointer list for the value j. When found, the corresponding

M2 is decremented by 1. This pinching procedure is

executed recursively until no free ends remain in the M2
list of multiplicities. At this point, the graph has been

reduced to the set of uncut segments as shown in figure

I-32.

An exit from the PINCH loop then transfers control to

an exit procedure which lists the segments in the

remaining 1-circuit of the graph. The first of these

segments is the cycle-forming segment. The remaining

segments are found by the following procedure. Beginning

with the last node for which M2 ¥= 0, remove segments by

first, removing and listing the cycle-forming segment. This

reduces the value of M2 to 1 for two of the points. Then

pinch off the remaining free ends, listing the segments as

they are pinched. The process will terminate when the

apex (the first vertex in order of precedence) is reached.

At this point, this particular vertex will have M2 = 0. In

fact, M2 will have been reduced to zero for every node in

the node iist.

An example of the output of a graph edit is shown in figure

I-33. The format places the graph code in the upper left-hand

corner of the image, directly under the identifier of the graph.

The programs for annotation of a graph will be discussed at a

later point. It is sufficient at this point to indicate that a graph

may be selectively annotated. Each element of the graph may be

identified by means of an interactive selection process. For the

moment, the description of the general procedures of the edit

will be continued.

First, each DIME segment must have a complete set of

information fields. This assures one that each segment has

two bounding 0-cells (possibly a duplicated 0-cell), and

that each segment has two cobounding 2-cells (again

possibly a single 2-cell duplicated). This means that one

part of the requirement that the structure be a complex is

satisfied, namely that each 0-cell is on the boundary of

some 1 -cell, and that each 1 -cell is on the boundary of

some 2-cell. The remaining part of the edit with regard to

the conditions on a complex would require that each

2-cell has its boundary in the 1 -skeleton. The format of

the segment ensures that the 1 -cells are all bounded in the

0-skeleton. The only editing procedure required would be

the determination that each 2-cell was bounded in the

1-complex. This step is deferred to a later point in the edit

in the interest of efficiency.

The editing procedure is an analysis of the funda-

mental neighborhood of each of the vertices on the map.

This neighborhood is a collection of generalized 2-cells or

disks. The dual graph of this vertex is first analyzed. If

there are no singular segments, the coboundary of the

vertex is a cocycle. In this case, the graph code of the dual

graph is

The outcome of a graph analysis consisting of the procedures

CHAINS, followed by KIRCHOFF, is a list of chained segments,

the individual chains, the essential vertices, and the graph code.

As used in the editing procedures, this analysis is accompanied

by a graphic output wherever this may be required or selected.

1: (1, 1, 1,0)

which signifies that there is a single component consisting

of one 1 -cell forming a single loop and a single 0-cell. The

CELL 100

DIMENSI0N2

nl nO ix a

1\ \1;\ \1\0

Figure I-33
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presence of singularities will be signified by the presence

of multiple loops as in the following code:

1,(n, 1,n, 0)

In such a case, a graph will be drawn representing the

pseudo-dual at the vertex.

The presence of acyclic elements, or the absence of

cycles, always indicates defective code. In such cases, the

graph is always drawn representing the pseudo dual.

In any case in which a defective graph appears or in

which there is a code indicating a defective encoding, the

corrections are made immediately. This part of the edit

corresponds to a test of the condition that a two-dimen-

sional manifold be topoiogically flat in the neighborhood

of each vertex. This test is not a sufficient test. It is

possible that some of the 2-cells abutting the vertex do

not have complete boundaries in the closed fundamental

neighborhood.

The next stage in the edit is to determine the

boundary of the fundamental neighborhood. This boun-

dary is the sum (mod 2) of the boundaries of the

individual 2-cells. At this point in the edit, one has already

established that the intersections of the boundaries of

these cells are topoiogically consistent in their relation

with their coboundary 2-cells; thus, to complete the

boundary analysis, it is sufficient to analyze the boundary

of the fundamental neighborhood.

The boundary of the fundamental neighborhood is a

graph. It should be a set of circuits. In the simplest case

(that which occurs most frequently) the boundary would

be a simple loop. The presence of cyclic components

indicates a disk with holes. The presence of multiple loops

indicates that there are singular boundaries of 2-cells in

the neighborhood. In such cases, the graph is drawn. This

graph may be drawn at different levels of detail. First, one

may draw the boundary itself (with or without annota-

tion). Then, if required, one may request the detailed

graph of all the graphic structure associated with the

neighborhood. If desired, one may suppress embedded

structure interior to individual 2-cells.

This analysis of the boundary of the fundamental

neighborhood assures us that the neighborhood is a flat

disk with possible holes, in short, a consistent geometric

structure. It remains to determine whether or not the

coordinate descriptions of the arcs are consistent with the

topological description.

The first test is one that determines whether or not the

vertex is interior to the region bounded by the boundary

of its fundamental neighborhood. One of the most

frequently occurring tracing errors places the point

outside of this boundary. When an analytic indication of

this condition is encountered, the editing program always

presents a graph representing the vertex in relation to its

boundary. ARITHMICON contains facilities for immedi-

ate correction of the location of the vertex.

The second kind of anomaly resulting from inconsis-

tency between the topological and metrical descriptions is

the presence of folds. Folds are detected in the analysis of

the pseudo-graph of the coboundary of the vertex.

Traversing the pseudo-graph in an arbitrary direction, any

retrograde segment encountered will signify that a fold

exists. Again, ARITHMICON contains the necessary facili-

ties for correcting this condition. It should be emphasized

that one must examine the pseudo-dual of the coboun-

dary and not the boundary of the fundamental neighbor-

hood, which may have any number of retrograde seg-

ments.

A neighborhood that satisfies a set of tests such as

those listed above will be topoiogically and metrically

consistent. Two such neighborhoods containing common
cells will be consistent with regard to their intersections if

each is consistent separately.

Map Editing

The purpose of map editing is the validation of the map model

as a faithful representation of the source map. This is done by

establishing a homeomorphism between the cells of the model

and the cells of the map.

A Chain Mapping is a mapping between two cellular

structures that is one-to-one, preserves dimension, and

preserves incidence. The fact that incidence is preserved

may be expressed in algebraic terms by the fact that such

a mapping, denoted here by F, commutes with the

boundary and coboundary operators. This commutativity

is sometimes expressed graphically by a diagram such as

that in figure 1-34. In this diagram, the top row represents

map cells, and the bottom row, the model cells. These are

related by a one-to-one mapping as indicated by the

double-headed arrows marked F.

To illustrate the significance of the diagram, consider a

given 0-cell c°. This cell is represented by the upper left

point of the diagram. The coboundary Eo(c°) is repre-

sented by the first point to the right of the upper left

corner. The image of this coboundary on the map is

F(Eo(c°), which is represented by the point immediately

below on the bottom row. But by the cummutative rule,

this image is also given by the expression Eq(F(c)). This

point may be reached by starting from c°, moving to the

image below on the model, and moving to the right by

taking the coboundary.
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map elements

model elements

COBOUNDARY SEQUENCE

I

1 < 1

E° E 1

V
F V F \f

< ' <

BOUNDARY SEQUENCE

Figure I-34

map elements

2 model e/ements

The procedures used in conducting an edit may be

traced on the diagrams of figure I-34. For example, to edit

a boundary of a 2-cell, the dua! of the sequence exhibited

above is used. This sequence is traced on the boundary-

diagram.

The general principles of map editing follow from this relational

scheme. The edit of a fundamental neighborhood of a vertex is

carried out in essence as a test of the commutatitity rule just

explained. One compares the sets

Eq (c° ); the map coboundary of the map-cell, c°

with the set formed by the procedures

F
-1

(Eo(F(c ))); the graphic image of the coboundary

of the model cell corresponding to the map-cell.

These sets should be identical, since they are algebraically

identical. If the model structure has a defective graph code, the

sets cannot be identical and further investigation is made,

primarily by direct comparison of the two images.

Precisely the same principle is followed when editing a 2-cell

boundary. In this case, one is concerned with boundary rather

than with coboundary operations. In either case, the graph

code, when admissible, is taken as a sufficient characteristic of

the cell neighborhood being tested. The graph code of the

vertex may be immediately obtained by direct observation of

the map. In the few situations in which the graph code is too

complex for direct visual perception, the necessary graphic

comparisons of the two images may be made.

In any case in which it is decided that the graph codes do

not coincide, the next step is to obtain the symmetric difference

between the sets being compared. This set is the 1 -cells in one

set but not in the other. These are 1 -cells attached to the model

0-cell in error, and the 1 -cells that should be, but are not,

attached to the 0-cell.

The principal analytic tool is the graph analysis consisting of

the sequential execution of the procedures CHAINS and

KIRCHOFF. The summary of the analysis is presented as a

graph code and an image of the graph itself. The first example is

the analysis of a vertex coboundary, for which the code is

1; (1,2,0, 1)



24

the code for a nonsingular 1 -cell with distinct boundary O-cells.

Tracing the course of this edit on the diagram of figure I-34, we

begin with a O-cell of the map, and through the index

(representing the mapping F) locate the corresponding O-cell in

the model. The coboundary operator, Eq, is then used to

retrieve the cobounding 1 -cells from the model. It is this set of

1-cells that is analyzed to form the dual graph referred to above.

Note that the retrieval of the DIME segments necessarily

retrieves the associated incident 2-cells abutting the vertex. Thus

corresponding to the original O-cell on the map, the procedure

retrieves the corresponding cells of all dimensions incident with

the O-cell.

The map is inspected in the neighborhood of the O-cell. This

amounts to looking visually into the neighborhood of the O-cell,

and hence the corresponding coboundary operation is implicit

in the visual inspection. Suppose that the inspection reveals that

there is a segment missing from the coboundary in the model.

This segment may be identified by direct comparison of the

graph from the model with the source map. From this segment

on the source map one may identify the corresponding segment

in the model by retrieving the coboundary of the opposite

vertex. In the simplest case such a segment may be found, and

will be correctable by inserting the correct vertex identifier.

Tracing the edit on the diagram, we see that we move to the

right to examine the coboundaries of the vertex in the model

and the corresponding vertex on the map. The error in the

model is corrected by finding the correctable segment from

information obtained from the coboundary on the map. This

segment is isolated and corrected.

The second example shows a different use of the editing

diagram. Let the vertex be analyzed and have graph code

1: (2, 2, 1, 1)

which represents a loop with a tail. In the simplest case,

inspection of the map will reveal that there is an extra segment

at the vertex in the model. One could simply detach the

segment from the vertex by blanking the vertex code. It is more

economical, however, to insert the correct code at this point.

The correct vertex code is obtained by looking into the

coboundary of the opposite vertex on the map. Then from the

boundary of the appropriate segment we obtain the vertex code

to be inserted in the corrected segment.

In each of the two cases just considered, the function F is

employed to map the correct vertex identifier into the

identified segment. It is instructive to trace out the sequence of

events in detail. In the first case in which there is a missing

segment, one in effect compares the coboundary Eq(c°) of the

map with the image set in the model, F(Eo(c )) = Eq(F(c )).

Since by definition of a chain mapping, the commutative rule

holds between the chain mapping and the boundary and

coboundary operators, the two versions of the coboundary

should coincide. Since the model has a defective code, we know
in advance that the rule cannot hold and that the symmetric

difference of the two sets represents an error in coding. By

adjudication of the differences, segment by segment, one

identifies the miscoded segments by searching the relevant

neighborhood.

This principle is applied generally when using the ARITHMI-

CON system for model validation. One further example is

important in practical applications. One has frequent occasions

to validate one-dimensional structures and their fundamental

neighborhoods, in connection with street-name edits. The

chaining algorithm, followed by a graph analysis, will identify

any components associated with a street name. At the end-

points of components one may refer to the map to determine

whether or not the termination is correct. Often it is not. In this

case, the question arises as to how to identify the misnamed

segments. To do this one retrieves the coboundary of the

end-points of the components. Comparison of the associated

street names with those on the map will serve to identify the

misnamed segment. This procedure is of great practical value,

since street-name variants, and spelling errors occur frequently

in the coding of urban maps.

Representation of Chains and Operators

Chains will be represented as lists of pairs,

(coefficient, identifier)

each individual pair representing some cell of the chain. The

coefficients will be signed integers. Addition of two chains will

be carried out by sorting the two representing lists on identifier,

and summing the coefficients of like terms. The addition, term

by term, is always carried out as signed integer addition. The

coefficient of a given cell within a chain may be positive,

negative, or zero. The coefficients will be interpreted in three

distinct ways. First, literally, as signed integers. Second, as

integers modulo 2, in which case, the algebraic signs are ignored,

and the integers reduced modulo 2, and finally in a sense of set

membership, in which the coefficients are ignored. Each of

these three interpretations has a practical use, and the interpre-

tations lead to different results.

The lists which represent chains are furnished with pointers

to the top of the list. Erasure is carried out by resetting the list

pointer to zero. The flow of data in the retrieval system is

shown in schematic form in figure I-35. The system consists of a

set of lists, representing chains, and a set of operations,

representing the boundary and coboundary operators. Lists and

operations are related as indicated in the flow diagram. This

diagram is a graph, with nodes representing lists, and segments

representing operations.

The lists, cellist, seglist, and inlist, represent chains. Cellist

represents either a 0-chain or a 2-chain as determined by a

system parameter, dimension. Seglist and inlist always represent

Tchains. Toplist, when associated with inlist, forms a DIME
representation of a 1-cell.
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toplist

terminal DIME

terminal

buffer O "< model

DIME

The system operations which control the flow of data

through this sequence of lists are defined in the following list.

The definitions are in terms of already defined operations.

E1(d, listl, Iist2) = list 2 <- Iist2 + Ej(listl); d = 0, or 2.

DIME (listl , Iist2) = Iist2 *- (E? (listl ), E? (listl ))

These three functions complete the implementation of the

boundary and coboundary operations. Note that inlist and

toplist, taken together at the end of a retrieval cycle, always

represent a list of DIME segments. In addition to these

fundamental operations, there are three auxilliary functions:

SELECT (PROC, listl , Iist2) = Iist2 «- PROC (listl

)

where PROC is some list processing procedure.

ERASE (list) = list «- null

SET (listl, Iist2) = Iist2 *- listl

The structure of the retrieval system as shown in figure 1-35,

may also be represented as an event diagram, figure 1-36. Any
path starting at the initial node of this diagram and terminating

at the final node represents a data retrieval sequence. The

retrieval loop is closed through the function

HOMOL (d, toplist, cellist, field); this function transfers

the list of cells of the designated dimension and field from

toplist to cellist.

Example 1. Construction of a fundamental neighborhood

of a vertex.

ERASE (ALL)

SET (dimension, 0)

SET (cellist, c°)

E1 (d; cellist, seglist)

SELECT (ALL, seglist, inlist)

DIME (inlist, toplist)

At this point of the sequence, the DIME segments of

the coboundary of the 0-cell c° are in toplist. The

analytical programs are then executed:

CHAINS (toplist, chain-head)

KIRCHOFF (chain-head)

These programs provide a graph analysis of the 1 -complex

represented in toplist. Resuming the retrieval sequence at

the end of this analysis,

ERASE (cellist, seglist, inlist)

SET (d, 2)

HOMOL (2, toplist, cellist)

At this point, a cycle of retrieval is completed. The 2-cells

abutting the 0-cell c° are now in cellist:

E1 (d, cellist, seglist)

SELECT (ALL, seglist, inlist)

DIME (inlist, toplist)

At this point, the boundary DIME segments of the 2-chain

in cellist are in toplist. This graph may now be analyzed in

the analytical programs. Continuing with the retrieval

example:

ERASE (inlist)

SELECT (coefficient =£ 0, seglist, inlist)

DIME (inlist, toplist)

At this point the boundary segments of the fundamental

neighborhood are in toplist. The sequence

ERASE (inlist)

SELECT (coefficient = 0, seglist, inlist)

DIME (inlist, toplist)
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SETdim

SET
cellist

HOMOL

E1

begin

ERASE

SELECT

DIME

end

Figure I -36
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will place the internal (embedded) structure of the

fundamental neighborhood in toplist.

In part II, in the section on the SPEAK language, it will be

shown how long strings of commands of this kind are set up as

permanent job-streams. For the moment, in the interest of

clarity of explanation, the full sequences are displayed in detail.

The successive stages of a retrieval of a fundamental neighbor-

hood are shown in figures 1-14, 1-15, and 1-16.

Example 2. Listing the 2-cells interior to a 1 -circuit.

. This is an important data retrieval sequence in prac-

tice.

ERASE (ALL)

SET (seglist, 1-circuit)

SELECT (ALL, seglist, inlist)

DIME (inlist, toplist)

HOMOL (2, toplist, cellist. Left)

This sequence begins with the oriented 1 -chain in seglist.

It is transferred to inlist, and the DIME segments

retrieved. The HOMOL function transfers the left-hand

2-cells to cellist.

SET (d, 2)

E1 (d, cellist, seglist)

Seglist already contains the original boundary 1-circuit.

This is added to the boundary chains of the set of 2-cells

in cellist. The result (mod 2) is the homologous 1-circuit,

which together with the original 1-circuit now forms the

boundary of a (possibly singular) annular ring. The newly

derived homologous 1-circuit has the opposite sense to the

original 1-circuit. Its sense is therefore reversed by

multiplication of the cells of the list by -1

.

Iteration of this procedure will result in the reduction

of the list of 2-cells in cellist to a single 2-cell, which

terminates the procedure, and the list of contents, or else

the list will begin to repeat 2-cells in the manifold.

Figure I-37 illustrates the first stage in the formation of the

homologous 1-circuit.

Figure I-37

In this figure, the original boundary Ci and the homolog-

ous boundary C2 are shown together with the (singular)

annular ring of 2-cells which they bound.

Example 3. Construction of the adjacency matrix, A.

The adjacency matrix is the square matrix forms from

the lists of adjacent vertices of a graph. Each row of the

matrix is a list of vertices adjacent to a particular node of

the graph. This matrix is related to the incidence matrix in

the following way. If E is an incidence matrix, and E' its

transpose, and I the identity matrix, then

A = E E' - I

The construction of this matrix in ARITHMICON is

given in the following retrieval sequence. The related

diagram is shown in figure I-38.

ERASE (ALL)

SET (d, 0)

SET (cellist, c°)

E1 (d, cellist, seglist)

SELECT (ALL, seglist, inlist)

DIME (inlist, toplist)

ERASE (cellist)

HOMOL (0, toplist, cellist. To)

At the end of this cycle, the adjacent vertices relative to

the original 0-cell are in the cellist. The connecting

segments are in both seglist and inlist.

E1 (d, cellist, seglist)

At the end of this procedure the linking segments have

coefficients equal to zero mod 2.

ERASE (inlist)

SELECT (coefficients =t 0, seglist, inlist)

This places the linking segments not incident with c° in

inlist.

DIME (inlist, toplist)

ERASE (cellist)

HOMOL (d, toplist, cellist. To

This sequence completes the second cycle. The cellist now

contains the list of 0-cells incident at the second removal

from the original cell. The associated coefficients repre-

sent the number of distinct paths from the original cell to

the corresponding cell in cellist.

The iteration of this procedure will produce the

powers of the adjacency matrix, row by row.
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CELLIST INLIST

C°

O

Erased O-cells indicated by x 1 -cell coefficients = 0mod2
shown as dashed lines

Figure I-38



Example 4. The fundamental neighborhood of a 2-cell.

ERASE (ALL)

SET (d, 2)

SET (cellist, c
2

)

E1 (d, cellist, seglist)

SELECT (coefficient # 0, seglist, inlist)

DIME (inlist, toplist)

This sequence places the DIME segments correspond-

ing to the boundary 1 -cells in toplist. The sequence that

follows collects the embedded 1 -cells:

ERASE (inlist)

SELECT (coefficient = 0, seglist, inlist)

DIME (inlist, toplist)

29

Example 5. Identification of a 1-cell from its terminal

vertices.

ERASE (ALL)

SET (d, 0)

SET (cellist, (c?,c2))

E1 (d, cellist, seglist)

SELECT (coefficient = 0, seglist, inlist)

At this point, the required 1-cell identifier is in inlist.

DIME (inlist, toplist)

This completes the DIME segment being sought. At this

point the equality of the 0-cells (bounding 0-circuit) in

toplist and in cellist may be verified.



Part II. ARITHMICON: A System of Computerized Cartography

SYSTEM OBJECTIVES

The primary objective of the system ARITHMICON is to

provide a complete system of support for the topological

analysis described in Part I of this monograph. To do this one

must provide the means by which an observer may establish a

hemeomorphism between a source map and an arithmetical

model of such a map. The necessary procedures for this purpose

have already been described in geometrical and algebraic terms

in Part I. The means by which these procedures are to be

realized as an actual computerized system are the subject of this

discussion.

A secondary objective, but an extremely important one, is to

provide a system that has the potential for wide distribution.

The achievement of such an objective makes it possible to

decentralize the work of constructing and editing computerized

cartographic models. In line with this objective, the system has

been designed in such a way that it may be implemented in

most general microcomputer configurations, and with only

moderate requirements for memory. One indispensable require-

ment is for the use of a terminal capable of supporting

interactive graphic procedures.

The original realization of the system in terms of operating

software was written in MACRO-10, and subject to roughly 2

years of actual operating experience. Although this version

resides in a DEC-10, a relatively large and powerful general-

purpose computer, it is of moderate size. Any version based on

the documentation of the present monograph should realize

important economies in the use of random access memory.

Some form of disk memory is required, but for most applica-

tions, even a floppy disk would be sufficient.

SYSTEM COMPONENTS AND FUNCTIONS

The principal system components and their mutual relations

with one another are indicated in the schematic of figure 11-1.

The elements labeled SPEAK, TOPO, and GRAPH are the

subsystems of ARITHMICON. The model is, of course, the

model described in part I. The terminal must be capable of both

iconographic and iconoscopic functions; that is, it must not

only produce images, but it must accept graphic inputs as well.

The graphic terminal is the interface between the observer and

the model.

TOPO

1 /
TERMINAL SPEAK MODEL

ARITHMICON Svstem Schematic

GRAPH

Figure 11-1
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In operation, the observer must compare the transmitted

images at the terminal with the actual image of the source map.

The observer may alter and annotate the source map, and may

also alter and annotate images on the terminal. Such images and

annotations are transmitted to ARITHMICON for interpretation

and analysis.

The system TOPO is essentially a computerized representa-

tion of the procedures of algebraic topology as applied to

combinatorial manifolds.

The subsystem GRAPH provides the encoding and decoding

of all graphic communication between the observer and the

system.

The system is under the control of the subsystem SPEAK.

This subsystem coordinates the flow of data between the

terminal and the model, and directs the analytic subsystem

TOPO and the graphic subsystem GRAPH.

THE SUBSYSTEM SPEAK

The subsystem SPEAK and the language SPEAK are denoted by

the same name. This will lead to no confusion, however, since it

is always obvious from the context which sense of the word is

meant.

The subsystem SPEAK is a system of procedures which

supports the computer implementation of the language. It will

result in greater clarity if the language SPEAK is described at

the outset. This will make clear the reasons for the various

functions of the several modules of the support subsystem.

The SPEAK Language

The SPEAK language below is modeled after the description of

a language given by Paul C. Rosenbloom, Elements of Mathe-

matical Logic, Dover, 1950. However, the same essentials are to

be found in many of the standard texts on the subject of

mathematical logic.

A language consists of a set of signs called an alphabet.

By the term string is meant a finite sequence of these signs

exhibited by writing signs in linear order from left to

right. Strings will be named by Greek letters, a, |3, and A.

If a and j3 are strings, then a|3 will denote the string

consisting of the signs of the string |3 written in order

following the signs of the string a. Two strings are

accounted as the same if they have the same signs in

identical places and the same number of places. A string

formed from a given string by choosing the first k-symbols

in order is called a head, and a string formed by choosing

the last k-symbols in order is called a tail.

In this formulation, the signs of the alphabet will be

called words. Words are classified as function words, or as

constants or variables. The function words will be denoted

by capital letters, F, G, . . . , the constants by letters, a, b,

c, . . . , and the variables words by letters, x, y, z, . . . . A
function word will be associated with a degree, a

nonnegative integer.

TERMS. A term is a string formed in such a way as to

satisfy a particular set of rules.

1. If F is a function word of degree n, and the words

w 1# . . . ,wn are terms, then

F (wi,. . . , wn )

is a term. The convention of enclosing the argument

word list in partentheses will be retained, even though

the construction of terms makes this unnecessary. The

use of parentheses will make more complex terms

more easily readable.

2. Any variable or constant word is a term.

RANK. A signed integer, known as the rank of a word, is

associated with each word. For function words, the rank

is one less than the degree. For constant or variable

words, the rank is defined to be —1. The definition of a

term implies that the rank of a term is equal to —1. The

rank of any string is defined to be the sum of the

individual ranks of the individual terms.

Terms may be characterized by the following two

rules:

1. The rank of a term is —1.

2. The rank of any head of a term not equal to the entire

term is nonnegative.

An alternative characterization of a term is the

following: A string is a term if and only if its rank is equal

to —1 and the rank of every tail is negative.

In the SPEAK language, the only constructions used

are terms or abbreviations for terms. Particular abbrevi-

ations will be introduced into the discussion at appro-

priate points. All of the data retrieval procedures de-

scribed in section 5 of part I are simple terms. Thus,

ERASE (inlist)

EL (cellist, seglist)

SELECT (ALL(Seglist), inlist)

each represents a term in SPEAK.

INTERNAL WORD FORMAT. The interal format of a

word consists of two data fields:

word: (rank, identifier)

The language processor obtains the information for the

rank either implicitly as when there are numerical inputs

or explicitly by consulting tables of symbols.

INDIRECT REFERENCES. A means is required for

distinguishing between a reference to an integer, such as

5, and the index or address, 5. This may be done by
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introducing a function for indicating indirect reference,

/(word). For visual convenience, this will be written

informally as

word'

Thus, the word 5' refers to the contents of the index

position 5. Some computers provide for a single stage of

indirect reference; others allow for an indefinite number

of iterations of the operation.

The language processor will interpret the symbol

followed by the prime indication as an abbreivation for

the use of the "/" function. The prime will be written as

a suffix even where left-hand Polish notation is used,

except for situations in which this might lead to

confusion.

The convention is particularly convenient for describ-

ing stack operations. A pointer, p, refers to an address of

a pointer. Thus, p' refers to the actual pointer data, held

at the address p. The reference p" refers to the data at the

top of the stack pointed to by the pointer p\

A language such as SPEAK is known as a simple

language because of the simplicity of its rule structure.

Such a language may be parsed in a pushdown stack. The

stack operations are standard, PUSH and POP. A combi-

nation POPSH, which transfers data by popping from one

stack and pushing to another, is also used for abbrevi-

ation. The POP operation is designated by the upward-

directed arrow; the PUSH, by a downward-directed

arrow. A left-directed arrow denotes the operation of

moving ciata designated in the second argument to the

memory position designated by the first argument.

4- (p, data) =
p^p' + 1

p" «- data

The stack pointer, p, is first incremented by one, and the

data word is transferred to the top of the stack.

t (p, data) s
data *- p"

p«-p'-1

The word at the top of the stack is transferred to the

location designated by "data", and the stack pointer is

decremented by one.

A useful abbreviation combines the POP and PUSH
operations, popping from one stack and pushing to the

other.

H(p,q)

Parsing a word string verifies that the string represents

a valid term, or else the parser returns an error indication

at the first point at which a syntax error is detected.

In parsing, terms are formed at the top of the n-stack.

The function word and its arguments which form the term

constitute a string of rank —1. The executable function

may be regarded as a replacement operation, the words

making up the string being replaced by the functional

value, itself a word of rank —1.

In certain cases, these rules are apparently violated, as

when terms are removed from one output stack to an

auxiliary stack. In reality the rule is strictly adhered to.

The auxiliary stacks may be regarded as parts of the

output stack.

The parser will accept or read words from right to left,

since the notation is left-hand Polish. Appendix A of part

II contains a summary of the syntactic rules for formation

of SPEAK procedures.

The parsing program accepts strings of input words. As

previously explained, each word has two fields, an

identifier field, and a rank field. The function RANK
extracts the rank field from a word.

The Pushdown Parser

PARSE =
4 (m, p') ; store current p-pointer

t (m, ),
*- (p, m") ; set new pointer

WHILE (HEIGHT (p'=£0)

U (p, n)

IF(RANK(n")^-1 )

THEN (JSR (n") )

ENDIT
ENDWHILE
t (m, p)

Note: Inessential parts are omitted, for example, error

returns from detected syntax errors. The PARSE is always

executed from the n-stack. The pointer is popped from

the n-stack to the p-pointer after memorizing the p-

pointer. At the end of the parse, when stack height is

zero, the original pointer is retrieved from the m-stack.

The PARSE procedure is reentrant. The structure of a

system of stacks is then illustrated by the tree structure

below. Beginning with a single stack, each stack may

contain an ordered string of stacks. Such a structure to

three generations of nesting is shown in the following

illustration:

Any parse is executed at the point at which the

command

JSR (PARSE term)
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is executed. Upon return from this subroutine, the control

returns to the parsing routine with the pointer reset to its

value at the time of the call. When all unfinished parsing

business from the m-stack has been completed, and when

the original command stack is empty, the system returns

control to the monitor, which requests additional com-

mand data.

The numerical indications on the preceding diagram

refer to the order of completion of the parsing of the

individual stacks.

Note: In the version of PARSE presented above, there

is no mention of the explicit address of the argument. In

use in SPEAK, a parse will always take its argument from

the top of the n-stack. Upon entering the procedure, the

argument will always be popped from the top of the

stack.

The SPEAK Stack System

The system stacks used by SPEAK are shown in figure 11-1.

Any of these stacks may grow without bound. When a stack

exceeds the allowable height, its iower half is stored in a B-tree.

The root data together with the call to retrieve is left at the base

of the stack, and the upper half of the stack is block transferred

to the base. This procedure is done automatically, and the user

need not be concerned.

memory stack holds the addresses of stacks at which parsing

interrupts have been generated (unfinished parsing business).

The program stack holds the pc-addresses for returns from

subroutines.

The function stack (f-stack) is not absolutely necessary but

it is a convenience. It holds the governing values of the results of

evaluation of successive decision functions.

The substitution stack holds the substitute values to which

the corresponding variables are bound.

The op-stack holds stack addresses of the input stack for the

purpose of memorizing reflexive references, and it holds stack

addresses of the s-stack for memorizing the number of bound

variables.

The monitor stack is the monitor program. Parsing this stack

is the method of executing the monitor routine.

PARSING. The argument for the procedure PARSE
will always be the top of the n-stack. The argument

"stack" appearing in the calling sequence of PARSE will

be n", the effective call being

PARSE (n")

Stack pointers will always be set by transferring the

value of the pointer from the base of the stack, at which

the pointer, consisting of two words, will be stored:

input

p-pointer

output

n-stack

monitor
function

f-stack

memory
m-stack

substitution

s-stack

program
pc-stack

operation

op-stack

Figure 1 1-2

Any number of stacks may be held in the general memory. The

stacks indicated in the schematic are the active stacks of the

system. The input stack is the current stack from which strings

are being parsed. The monitor stack is the SPEAK monitor. The

base: (height, topstack)

where topstack = base + height.

Thus the p-pointer will always be set by the transfer

t (n, ),«-(n",p)

The first system stack to be created is the command
stack. This stack is the output of the language processor.

The system monitor always begins execution of a com-

mand string by processing the term

PARSE command.

The parsing program places the word "command" in

the n-stack, and the parse is begun in the manner

indicated above. The words encountered in the sequel

have all been accounted for in the previous explanations.

A word at the top of the input stack is either a numerical

argument, an executable function, or a word string

required to be parsed.

IF THEN ELSE ENDIF. The SPEAK construction based

on these four functions is

ENDIF, ELSE (term3>,THEN <term2>, IF (terml)

The terms in angle brackets are single-word labels for

strings.
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These functions will be described in the SPEAK
formalism. Where functions used are intended as equiva-

lent functions in NATIVE, the equivalents will be

enclosed in corners, "
' ''.

The IF function transfers the top of the n-stack to the

f-stack:

p-pointer points to the word immediately to the left of

the bracket.

] = I (p', op)

The function DO is defined as

IF = U (n, f)

RETURN

The conditional execution, THEN, is as follows:

THEN =
rIF>(f"^0)

THEN^(PARSE (n") )

fELSE^(t(n,
)

fENDIF^

Note: the functions in corners are NATIVE versions of

the usual operations of structured programming.

The ELSE function is identical in structure with the

THEN function differing only in the substitution of 1 for

in the conditional operation.

ENDIF = t(f, )

CONDITIONAL PROCEDURES. The arguments of the

functions THEN and ELSE are procedures to be exe-

cuted subject to the governing decision function. The

outcome of the governing condition is at the top of the

f-stack.

The signs for such a conditional procedure are en-

closed in angle brackets. Thus

< procedure >

where procedure is a string. The first encounter, with the

right-angle bracket, initiates a text handling procedure.

This procedure forms a word consisting of the two fields of

a pointer. The top of the stack is the word immediately to

the right of the right-angle bracket, and the bottom of the

stack is the final-angle bracket. This stack pointer is

placed on the top of the n-stack.

The net effect of this is to provide a reflexive

reference. Execution of an instruction,

DO =
rIF^(f"^0)

rTHEN> (PARSE (n"), U (op, n), t (f, ))

^NDIF1

The function, [, is defined as

[
=

I (op, )

Note: the DO operation always implies an IF opera-

tion within the scope of the reflexive operation. This

condition is known as the stopping rule. The stopping rule

is always executed before the DO operation is reached.

Thus,

[ DO, TH EN < stack2 >, I F (stack 1 ) ]

is equivalent to the DO-WHILE construction of structured

programming.

A second example is the string

[DO, IF (stack2),stack1]

This operation first results in a parse of stack 1, and then

executes an iteration if the outcome of the decision

function parse is set (= 0). This function is equivalent to

the DO UNTIL operation in the convention of structured

programming.

SUBSTITUTIONS. The indication of a substitution string

is the use of brackets,

{ stringl ; string2; . . . . ; stringn }

It is assumed that each of the strings named represents a

term. The semicolon designates a function defined as,

THEN

will, if the governing conditional is satisfied, execute a

parse of the stack designated by the pointer at the top of

the n-stack. This parse will terminate at the base of the

stack, corresponding to the left-angle bracket, and return

to the main sequence of the parse.

REFLEXIVE REFERENCES. The bracket symbol, ] , will

denote a reflexive reference to the input stack. At the

time at which the rank of the symbol is recognized, the

U(n,s)

The right-hand bracket, " }" is defined as

}
=

Kop.s')

The left-hand bracket, "{", is defined as

t (op, s')
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Parsing a string of this kind, begins with the encounter

with the right bracket which memorizes the position of

the s-pointer. The parse continues until the first occur-

rence of ";", at which time the value at the top of the

n-stack is popshed to the s-stack. This procedure con

tinues as long as there are semicolons in the string. The

final string is assumed to contain the "free" variables, x1,

x2, . . . , xn. Any x-reference is an indirect reference to

the substitute stack, s-stack, counted from the base of the

stack.

As an example of a simple substitution, the following

string is presented:

{ + (x1,x2);3;4}

Parsing this string causes the following sequence of

events. The encounter with the right-hand bracket causes

the s-pointer value to be memorized in the op-stack. Then,

in turn, 4 and 3 are first transferred to the n-stack and

from there to the s-stack by the action of the semicolon

operation. The s-stack therefore contains the numbers 4 in

the first position and 3 in the second. Continuing the

parse, one encounters the variable x2. This has been

interpreted by the language processor as

Kn1)

which replaces x2 in the n-stack by the value n2. A similar

evaluation of x1 is made in its turn. The ultimate answer

which appears on the n-stack is the integer 7.

At the termination of the substitution, the left bracket

resets the s-stack pointer to its original value.

The writer can obtain the first undefined x-value by

means of a system interrupt, and so there is no need to

remember the number of currently defined variables.

FREE AND BOUND VARIABLES. A variable symbol

within the scope of a substitution operation is bound by

this operation. A "free" variable is a variable for which no

numerical value has been assigned. Any numercial value,

however defined, as a simple number, a number theoretic

function, or as a function of functions, may be specified

as the assigned value of a variable.

Variables are denoted by the symbols x1, x2, . . . , xn,

... up to any required finite number of such symbols.

These, of course, may be denoted by any other letters

thought more convenient, by the process of symbol

equivalence. Free variables in a term are often encoun-

tered in procedures for which arguments are unspecified.

Such procedures are called formulae. They become

executable procedures when the free variables are bound
within the scope of some substitution operator.

In an expression of the sort

{f(x4, x5, x2);term1;term2 }

the variable x2 is free. The variables x4 and x5 are bound

by the substitution. Their values are obtained by evaluat-

ing the terms terml and term2, respectively. Before such

an expression may be evaluated, it must be part of some

larger context in which the variable x2 is bound by a

substitution operation. An attempt to refer to a free

variable during a parsing operation will result in an error

return, since the reference will refer to a value outside of

the range of the s-stack. When the language processor

encounters an expression of the kind exhibited above, it is

verified that the variables x1 through x3 are alread^

defined. Otherwise, an error return is made.

ITERATION OF A SUBSTITUTION. If in the substitu-

tion operation

[DO (op), THEN (stack2), IF (stackl)]

the decision function is

and the THEN component is

stack2= {-(x1, 1), f(x2) ;; }

and the initial values on the n-stack are

(n1, n2) = (m, a)

then, the function computed by the construction is f
m

(a).

Since n" is the decision function, the initial value is m
(^ 0). The decision value d = 1 then appears at the top of

the n-stack. The IF function removes this value and places

it at the top of the f-stack. The label of stack2 then is

placed on the f-stack. The THEN function causes a parse

of the stack2. This results in the computation of f(a) and

the decrementing of n" by 1. The values at the top of the

n-stack are then

m 1,f(a)

If (m — 1) is not zero, then the second execution of the

THEN component takes place. This removes the values

from the top of the n-stack and places them (in reverse

order) in the s-stack.

(s2, s1) = (f(a),m- 1)

(the s-stack is indexed from its base).

The iteration then causes computation of f(f (a)) and

(m — 2) which appear on the top of the n-stack in order

(m-2,f(f(a))

It is easily seen that the continuation of the procedure

will result in the computation of

0,f
m

(a)
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for the top of the n-stack. At this point, the decision

function, being n", will be zero and the procedure will

terminate, leaving only f
m

(a) at the top of the n-stack.

The s-pointer will have been returned to the base at the

end of the substitution operation.

For example, the iteration of multiplication is the

power function.

t (n, ) [DO, {THEN(-(x2, 1), *(a,x1)>,

IF (x2) ;; }] m, a

n-stack s-stack

m, a m, a

-(m, 1),a
2 -(m, 1),a

2

0,a
r

PRIMITIVE RECURSIVE FUNCTIONS. A primitive re-

cursive function is one specified by a particular schema of

computation. The schema is itself a function of functions.

The function arguments of the primitive schema are the

basis of the recursion, and the primitive function com-

puted in this way is said to be "recursive in" these given

functions.

The primitive schema is,

f(0, a) = b

f(n + 1,a) =g (n, a, f (n, a))

The variable n is the variable of recursion, and the

function g is a given function. The function g itself may

be a primitive function computed from still other given

functions.

The realization of or the expression of this schema in

SPEAK is now presented. Construct the function h

h: + (x1, 1)

x2

g (x1, x2, x3)

Then the substitution operation

{h(x1,x2, x3) ;;; }

iterated with the stopping rule

N-x1

will result in the computation of the function f(N, a).

FIRST-ROOT OPERATORS. Given any function of two

arguments,

f(n, m)

an operation may be constructed having for its value the

first value of the argument n for which the condition

f(n, m) =

is satisfied.

This function, so defined for a fixed function f, is a

number theoretic function of the argument m. Writing

Mi (f (i. m) = 0)

the function so defined will be called the first-root

function. I is a functional since its value, if any, is

dependent on the choice of the function f.

The variable i which appears in the formula above is

bound. In SPEAK, bound variables appear only implicitly.

This is simply expressible in SPEAK. In effect, the

substitution operation is confined to the first variable

argument,

{... f(x2,x1); ..;}

This has the effect of binding the variable x2 within the

scope of the inner pair of brackets. The variable x1 is

bound within the scope of the outer pair of brackets.

There is no need for any further indication of which

variable is bound and within what scope.

In general the first-root operation will have a primitive

function as one of its arguments. The computation

scheme already presented will be slightly modified by

changing the stopping rule to

x3

This change will halt the iteration whenever the functional

value, which is denoted by x3, becomes zero.

Of course, this may never occur. Whenever the

function f(n, m) is such that one may assert that the

following condition holds

i. En(f(n, m) = 0)

then the first-root function represents a unique number.

If, however, one may only assert that for some values of

m, condition i. holds, then the function is known as a

partial recursive function.

Every general recursive function may be expressed in

the form

g(Mi(f(i, m) = 0))

in which the functions g and f are primitive recursive.

Since SPEAK has the means for expressing the procedures

for computation of a primitive function and a first-root

operation, it has the means of expression to cover general

recursive procedures.
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EXAMPLES. In the following examples, it is to be

understood that any and all of the computations ex-

pressed may be made in an interactive mode and on a

term-by-term basis.

Example 1. The Desk-Calculator Mode

A trace of this operation, beginning with the arguments

(12, 16) in the n-stack, is as follows:

n-stack

5 cr 5

+2 cr 7

—4 cr 3

*6 cr 18

This simple example indicates the method of calculat-

ing from the terminal keyboard. There is no effective

limitation on the complexity of calculations that can be

made in this way. In left-hand Polish the calculation just

illustrated is

*(6, -(A,+(2,5)))cr

Note: cr is carriage return.

The next examples to be presented represent some-

what more complex calculations.

Example 2. The Fibonacci Sequence

This is a primitive function defined as follows:

FIB(0) =

FIB (n+1) = 1;if n =

FIB (n+1) = FIB (n- 1) + FIB (n);for n *

This function may be computed by iteration of the

following substitution

{+(x1,x2),x2;;}

with a stopping rule based on a count of the iterations.

Tracing the computation, the successive versions of the

s-stack and the n-stack are

n-stack s-stack

1,0 1,0

1,1 1,1

2, 1 2,1

3,2 3,2

Example 3. Greatest Common Divisor

As a final example of iterated substitutions, the routine

for computing the gcd of two integers will be presented.

The substitution operation to be iterated is

{MOD (x2, x1),x2;;}

n-stack

12, 16

4, 12

0,4

The stopping rule is simply x2.

s-stack

12, 16

4, 12

Note: The MOD function is the usual mod-function,

the remainder after division of the first argument by the

second.

Since the stopping rule contains the variable x2, the

rule must be stated within the scope of the substitution

operator

[DO, {THEN (MOD(x2, x1),x2, IF (x2) ;; }]

This operation assumes that x1 is the smaller of (x1,

x2). This condition may be assured by the following

procedure.

Beginning with the pair 16, 12, at the top of the

n-stack

{MIN (x1,x2), MAX(x1,x2) ; ;}

will place 12 at the top of the n-stack, with 16 just below.

The SPEAK Subsystem

The subsystem, in distinction to the language, consists of the

program modules required to implement the language processor.

The principal program modules and their relationships are

indicated in figure II-3.

The monitor, which is central to the system, is intended to

operate either as an independent free-standing monitor, or as a

submonitor where the host system is a large time-sharing

facility. Aside from the monitor itself, denoted by MONITO,
there are four communications modules, two for communica-

tion with the disk, READ and WRITE, and two for communica-

tion with the terminal, TYPE and ACCEPT. The argument for a

disk-read, or for a disk-write specifies a RAM file and a DISK

file. The specification includes the number of storage units to be

transferred. These four functions are machine dependent, and

consequently are not specified in greater detail here.

INTERP. INTERP is the name of the interpreter. It is a

table-driven automation. Table I is the classification table

of the first 64 ASCII characters. Different classifications

may be adopted. The classification may be extended to

the full ASCII set, and the given classifications may be
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subdivided. The following table is adequate for the

purpose of demonstration.

Table I. Character Classification

12 3 4 5 6 7

65355555
20 21 22 23 24 25 26 27

00000000
40 41 42 43 44 45 46 47

42222222
50 51 52 53 54 55 56 57

22222222

10 11 12 13 14 15 16 17

44444414
30 31 32 33 34 35 36 37

00444444
50 51 52 53 54 55 56 57

22222222
60 61 62 63 64 65 66 67

22244444
In the interpreter, the input will be designated by the

pointer, "ch" which will point to the octal representation

of the input character, the upper integer of the pair, while

the function CLASS (ch) refers to the lower integer of the

pair in the table. The significance of the class marks is

indicated in the following list; class 0, digits; class 1,

decimal point; class 2, alphabetic character; class 4,

arithmetic symbol; class 5, other characters; and class 6,

the space.

The automaton has six states:

Table II. States

0— initial state

1—integer

2—fraction

3—alphanumeric
4—arithmetic symbol

5—literal

The state other than the initial state, is determined by

the type of word being generated. Thus when an integer is

being generated, the automation assumes the state-1. The

automation always begins in the initial state and returns

to this state at the completion of the formation of a word,

or after the execution of an error interrupt.

Within the interpreter, states and classes will be

referred to by code numbers, from to 6 in the case of

character classes, and from to 5 in the case of states.

Each input character will result in a recomputation of the

class and state of the system. On this basis a new state,

and some functional procedure will be selected. There are

seven system functions that may be called from the main

program module.

The symbol table contains the addresses of the

interpreter functions associated with the following alpha-

numeric names. These functions are identified in the

program by code numbers from 1 through 7.

Table III. Interpreter Subroutines

1: FRACTION
2: INTEGER
3: ENDNUM
4: ENDINT
5: STRING
6: INITIAL

7: ERROR

Integers are interpreted according to the system radix,

a parameter. Powers of the radix are accumulated in the

system address, "power."
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Interpreter Subroutines

TITLE: FRACTION

ENTER:

power *- * (power, radix)

CALL (INTEGER)

RETURN:

TITLE: INTEGER

ENTER:

count +- + (count, 1)

IF (count GT 10) GO TO ERROR
int«-+ (

* (int, radix), -(ch, bias))

RETURN

Note: ch — the input character.

bias — the ASCII bias for a numerical digit (60

octal)

count — the character count of the current word

radix — the system radix (usually either octal or

decimal)

ENTER:

TITLE: STRING

count «- + (count, 1)

IF (count GT 6) GO TO ERROR
DEPOSIT (ch)

RETURN

Note: DEPOSIT is an operation or a pseudo-operation

for depositing characters in a string.

In addition to the functions FRACTION, INTEGER,
and STRING, there are three formatting functions which

take the outputs of the word-forming procedure and place

them in SPEAK internal format.

These formatting functions are ENDFRACT,
ENDINT, and ENDSTRING. ENDINT, and ENDFRACT,
simply place the output word in a SPEAK word

(—1, integer)

TITLE: INTERPRET

ENTER:

ch^+ (ch, 1)

class <- CLASS (ch')

state *- STATE (state, class)

function <- FUNCTION (state, class)

JSR (function)

RETURN

Note: ch designates the character pointer.

ENDSTRING has two forms of output. If the word

formed is a literal, then the word is placed unchanged in

the output. However, if the alphanumeric word is not a

literal, its definition is obtained from the symbol table.

Entries to the symbol table are set in by means of a

DEFINE statement, which establishes the correspondance

between the input word, its rank, and its numerical

equivalent. Actual addresses are assigned by the B-tree

handler which manages storage in general.

Table V is the driving table of the automation. This is

a double entry table, entered by entries designating the

state, and the class of the input character. The functions

STATE (state, class) and CLASS (state, class) represent

the entries in the driving table.

Table IV. Driving Table for Interpreter

CLASS 12 3 4 5 6

STATE

2,1 ,2 5,3 ,5 5,4 ,0 ,0

1 2,1 ,2 8, 8, 8, 8, 4,0

2 U 8, 8, 8, 8, 8, 3,0

3 5,3 8, 5,3 8, 8, 8, 6,0

8, 8, 8,

5,5 5,5 5,5

5,4

5,5 5,5

6,0

5,5

Notes: Each table entry is a pair, TABLE (state, class) =

(FUNCTION (state, class), STATE (state, class))

The Function ENCODE. The purpose of the ENCODE
function is to interpret the internal words which are

simply bit-strings, as strings of ASCII characters. The

different interpretations allowed are ASCII, decimal,

octal, and generally, any other radix whatever, such as

binary, or hexadecimal.

Three things must be specified in the argument: a

source file of data, a destination file, (often the terminal

itself or some fixed buffer), and a format, which is a

simple directive in the form of a list, from which the

various interpretations are taken.

Thus,

(50, 5A, "",10D, "."5D)

represents 50 records each consisting of five ASCII

characters, followed by three spaces (specified by the

literal designated by quotes), followed by an integer

consisting of ten decimal digits, blank filled on the left,

followed by a decimal point, followed by a decimal

fraction, blank filled on the right.
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The routines for performing these interpretations are:

ASCII

INTEGER
FRACTION

Where these procedure names are contextually dis-

tinguished from the identical names used in the program

module, INTERP. A format is simply a list, stored under

the name to be associated with the list. Thus, the

function with its arguments is written as ENCODE
(format, source, destination).

B-TREES. The primary method of storage organization of

ARITHMICON is the B-tree. These trees are exactly those

described by R. Bayer and E. McCreight 1 For reference,

their definition is quoted here. The B-tree is a system of

organization of the pages containing an ordered set of

indexes. The tree is a collection of pages of index

numbers and pointers for which each page is identified

with a node of a rooted tree.

The individual record on each page is alternately

pointers and data. In the present application, the data

consists of two words, the index and a pointer to data

associated with the index (this data being irrelevant for

the purpose of the present discussion). On any page, the

first and last elements are pointers to the ordered

successors of the node (page).

The first such pointer points to the predecessor

(father-node) of the page, and the remaining pointers

point to successors (son-nodes) of the page.

1 12 Informatica, Vol. I.

In such a system, the pages are not ordinarily full.

This allows for the insertion of data. When a page is full,

the attempt to insert data in the page will require that the

page be split. On the other hand, when two pages are half,

less than half full, and are adjacent, sons, the pages may
be consolidated into a single page.

Whenever the root page splits, the height of the tree

is increased by one. When immediate successors of the

root are concatenated, the height decreases by one.

Pages without successors are called leaves. Any path

from the root page to a leaf has the same length measured

in terms of intervening pages, as any other such path.

The formal constraints are:

1. Each path from the root to any leaf has the same

length h, ulso called the height of the tree. The number

of nodes from the root to a leaf, inclusive, is h.

2. Each node except the root and the leaf nodes has at

least k+1 successors or sons. The root is either a leaf or

has at least two sons.

3. Each node has at most (2 k + 1 ) sons.

Each page is provided with a header containing three

words of information p , j, n. The first word is a pointer

to the father node. The second word denotes the order of

precedence of the node among brothers. The third word

denotes the number of keys in the page (n LE k).

Po.yi,Pi p n _i,yn ,pn

Each of the pointers, Pj, points to a son-node having the

same data structure. If all the keys are blank, the node is a

leaf.
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Finding a Key in a B-tree. The procedure is expressed in

SPEAK.

{ READ (x2, x1) ; }] root; buffer }

fa (y (i) GE key)

IF (y (x3)^key) ; }

{THEN<p(x3-1)>
{[DO

The steps of this operation will be traced. The

successive lines are read from right to left, since the

notation is left-hand Polish. The opening brace indicates

the start of a substitution. The word, buffer, is then

stored by the semicolon. The word root is then placed at

the top of the n-stack. Note, at this time, the word,

buffer, is in the top of the s-stack.

The instruction READ (x2, x1) for these values of the

variables, namely root, and buffer, reads the root page

into the buffer designated.

The next operation is a first root operator which finds

the first index for which the stated condition is satisfied;

this index is placed in the top of the n-stack.

The IF operation contains the variable, x3, which is

bound by the substitution appearing at the end of the

line. The effect of this substitution is to bind x3 to the

value of the' first root just computed. This substitution

operation removes the first root from the n-stack and

places it in the substitute stack. The IF operation places

either a 1 or a zero in the f-stack. The THEN operation

will be executed if the condition tested above is satisfied.

This operation puts the pointer indicated in the top of the

n-stack. The DO operation causes iteration of the proce-

dure. Note that the left braces as encountered, clear the

s-stack of the substitutions, unbinding the variables. For

example, the final left brace clears the s-stack of the word,

buffer.

In defining first-root operations, such as the one used

here, it is customary to define the value of the root for

those cases in which no index can be found satisfying the

condition. In this case, the required value is simply the

fictitious index, n + 1. In this case the pointer value

computed will be p n , the final pointer of the page.

Reading Keys in Sequence.

The successor relation. The relation between a key and

its successor in a B-tree may be expressed in SPEAK. The

expressions describe the sequential construction of chains

of pointers.

The upward chain. To find the successor of a key in a

given node, not a leaf node, the following chain is

constructed,

{ READ (x1, x2) ; }p{k) ; buffer }

IF(po^O),
THEN (p(0))

{[DO

In this sequence, the pointer pk is read in the original

buffer contents, placed in the n-stack, and the iterated

substitution performed until a value of Po = is attained.

At this point, the value of yi is the successor.

The downward chain. To find the successor of a key in

a leaf-node one merely takes the next key in sequence

within the leaf if such exists. If the key is the last in the

leaf, its successor is found by constructing the downward

chain, using the values of p , r, and n, from the header

information.

READ (x2, x1) ;r;p_
2

}] ; buffer }

{ IF (x3 = n)

{[DO

Tracing the operation; buffer is first set as the

argument, x1, p , as that of x2 and r, that of x3. The

READ instruction brings the new page into buffer. The IF

instruction compares x3 with n (from the header on the

new page). If the operation is iterated, the new p and r

are copies from page into the n-stack.

Actual insertion, deletion, and updating of header data

is carried out in a text editor. The text editor also

performs the page or node-splitting operation, and it also

consolidates adjacent brothers when this is possible.

The Subsystem TOPO
A geographic base file (GBF) is a collection of subfiles

containing descriptive properties of the discrete geometric

objects known as cells. There are therefore three types from the

point of view of dimension, 0-, 1-, and 2-cell descriptive files.

Thus, given a cell identifier, one may enter the descriptive

file with the cell identifier, and obtain the description of the

cell. Conversely, one may construct index files, which are

representations of the lists of cells having a given descriptive

property. One may therefore obtain from the file system a list

of cells having some stated property or combination of

properties represented by the basic data.

This part of the system is quite customary. However, the

fact that among the descriptive properties, the property of

incidence is singled out means that one can obtain not only

those cells having a given property, but in addition, one may

retrieve from the file the complete geometric description of the

cellular object by the chosen description.

Some examples are: the collection of 2-cells making up an

administrative district, the collection of 1-cells bearing a given

descriptive street name, the collection of 0-cells for which a

specified event has been recorded.

In part I, the basic data retrieval functions have been

defined. Central to this system is the file called inlist, the list of

segments present in the immediate memory. From this list, one

obtains the internal list, toplist, and any further descriptive

segment data required for a particular application. By using the

HOMOL function, one obtains lists of incident cells, either 0- or

2-dimensional, and from these lists one may obtain access to the

related descriptive property files.
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The descriptor files are identified by dimension of the

geometric object described, and the particular descriptive

property. Index files based on these descriptions are essentially

lists of all cells having a property identified by the descriptor.

In figure 11-5, the method of retrieving a complete descrip-

tion of a specified geometric object is illustrated. In the first

example, it will be assumed that the geometric structure is

defined by a list of segments (1-cells) contained in inlist. The

function, DIME, retrieves the topological data and places it in

toplist. The one-dimensional descriptors may then be consulted

to obtain any required descriptive data relating to the segments

in inlist. Next, by using the HOMOL function one obtains the

list of incident cells, 0-cells and 2-cells, and from these lists one

obtains the descriptors of these cells. As shown in the

illustration, two applications of the HOMOL function are

required for this purpose.

By methods presented in Part I, it is possible to expand the

neighborhood of cells for which the description is to be

retrieved. One of the important advantages of ARITHMICON is

that this expansion of the neighborhood may be accomplished

by interactive direction.

The second situation to be considered is that in which one

begins with some stated property. Entering an index with the

specified property will fill the list, cellist, with the cell

identifiers corresponding to the property. By use of the E1

operation, one obtains the list of incident 1-cells. These appear

in seglist. The function, SELECT, transfers designated cells to

inlist, and the description of the defined object may be obtained

by the procedure outlined in the preceding paragraphs.

For many purposes, such as the administrative use of a

geographic file, the data retrieval system just described is

adequate. However the construction of a large geographic file by

any of the techniques currently available is a difficult undertak-

ing, and it is unlikely that one can obtain by these means an

unedited file of adequate quality. One should be prepared to

edit any newly prepared geographic file. The procedures for

conducting such an edit are those described in part I.

Editing Procedures

Two kinds of editing procedures are used to establish the

topological and metrical consistency of the map model. These

procedures are designed to follow exactly the requirements of

the map editing procedures of part I.

Every 2-cell of the model is assumed to be interpretable as a

2-cell in some geometric object. The generalization of 2-cell to

include the case of disks from which interior 2-cells have been

removed is essentially a trivial one, introduced only for

convenience. The 2-cell edit is simply a test that the boundary

of the cell is a simple 1 -circuit, or a set of components

consisting of sets of 1 -circuits that can be interpreted as

boundaries of holes in a disk.

The second set of procedures examines the fundamental

neighborhood of each O-cell interior to, or on the boundary of,

a closed fundamental neighborhood of a given O-cell. It is

required that each of these neighborhoods satisfies the "co-

cycle" condition for interior points, and for points on the

boundary, the incident 1-cells of a coboundary must form a

cochain beginning and ending with a boundary 1 -cell.

These edits are carried out by means of procedures detailed

in the sequel.

inlist tr\r segment descr.MJfjiioi

\ 1

dim-0 dim-2

HOMOL

cellist cellist

cell descr. cell descr.

Figure II-5
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EDITING A 2-CELL. The sequence in SPEAK,

SET (cellist, cell), 2

E1 (seglist,

SELECT (coeff # 0, inlist,

DIME (toplist,

CHAINS (chainlist,

KIRCHOFF (codelist,

will cause the retrieval and analysis of the boundary of a

2-cell. For an absolutely regular 2-cell, that is, a disk

without holes, this boundary code should be

1; 1, 1, 1,0

a single component consisting of a loop.

If any different code is obtained, an extended analysis

must be made. However, in the case the correct code is

returned, the procedure

CLEAR n

will clear the n-stack for a new analysis.

The procedure

INTERSECT (chain)

will be executed. This will return a decision outcome (0 or

1) to the n-stack, according as there are no intersections

of the chain with itself, or as there is at least one such

intersection. In the latter case, the interactive editing

program, DISPLAY will be initiated.

Any topological defect of the 2-cell boundary, such as

the presence of acyclic elements, will also be referred to

the program, DISPLAY.

In case there are multiple components of the boun-

dary, and the components are all cyclic, the external

boundary must be identified. The procedure,

EXTERNAL (chainlist)

will return the identifier of the external boundary chain

to the top of the n-stack. If no chain is external an error

return is made to he interactive program, DISPLAY.
Having identified the external boundary, the iteration

of the procedure of obtaining the homologous internal

boundary will ultimately reach a state at which the

boundary is homologous to zero. See appendix A, part I.

At each stage of this procedure of boundary analysis,

the circuits are tested against each other and against

themselves for self intersections,

INTERSECT (circuit-i, circuit-j)

All error returns will be made to the DISPLAY procedure.

The end result of this editing procedure is to verify

that the boundary of the 2-cell is a simple loop, after

filling all of the holes in the disk. Moreover, all of the

hole-boundaries and the disk boundary itself are topo-

logically and metrically consistent.

EDITING A 0-CELL

The following SPEAK sequence will retrieve the

coboundary of the 0-cell.

SET (cellist, cell, 2)

E1 (seglist,

SELECT (ALL, inlist,

DIME (toplist,

CHAINS (chainlist,

KIRCHOFF (codelist

At this point any code different from (1, 1, 1,0) will

cause an error return to DISPLAY.

After any necessary corrections, the fundamental

neighborhood must be formed. This is done by first taking

the boundary of this neighborhood.

CLEAR n

HOMOL (cellist, 2, left, toplist)

E1 (seglist, 2,

SELECT (coeff ^ 0, inlist

DIME (toplist,

CHAINS (chainlist,

KIRCHOFF (codelist,

.urn cnis point on, the same procedures used in

analyzing the 2-cell will be followed. The holes, if any, in

the disk forming the fundamental neighborhood will be

filled, and any repeated segments in the disk boundary

will cause an error return to DISPLAY.

The principles of this edit may be summarized quite

simply.

The coboundary of the vertex is retrieved, together

with the two-dimensional coboundary of this coboundary.

The usual cocycle condition is verified.

Next, if the boundary of this coboundary is either in

components, or has multiple loops, the external boundary

of the disk is identified, and the remaining boundary

circuits are homologous to the external boundary. By

taking the negatives of these circuits, and iterating the

procedure of taking the internal coboundary cells, a point

will be reached at which the boundary is null, that is to

say, all holes have been filled and the internal boundary is

null, or the external boundary is homologous to zero.

The remaining tests are metric. The vertex must be

positioned internal to its fundamental neighborhood. A
PIP procedure for the point relative to the external

boundary will verify this condition.

In determining the external boundary, two tests are

made. First, the procedure, INDEX, is used to determine

the angular rotation of the successive edges of the

boundary polygon during a complete traverse. The index

must be either +1, or —1. The positive sense is taken to be

anticlockwise rotation.

The external boundary should have index, +1, and the

internal boundaries should be of index, — 1

.

Any error detected at any stage causes an interrupt to

the DISPLAY program.
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The Subsystem GRAPH (Components and Functions)

The subsystem, GRAPH, is designed to control the interactive

graphics terminal, and to provide all necessary geometric

support for the display and manipulation of graphic images

required for the editing of maps. The commands of GRAPH will

be expressed in the SPEAK language.

The graphic terminal operates in two modes. In the first,

iconographic, numerical models are converted to images on the

face of a cathode ray tube. In the second mode, iconoscopic, or

image viewing mode, the present state of the art does not

support a true image-viewing mode. This mode is usually

simulated by such analog devices as light-pens, mechanically

conditioned cursors, and stylus-tablet devices. The elementary

iconoscopic element "viewed" by these means is the point. All

references to an image are transmitted by the transmission of

textual data, and the procedure of point-identification, point-

ing.

When an observer points to provide positional signals, the act

of pointing is denoted by a text symbol, #. When the language

processor encounters this symbol, an interrupt is generated. This

interrupt is processed by displaying of the cursor, and a wait

state which requires a pointer positioning, and return indication

from the observer. Thus any expression such as,

DIST(#,#)

represents a function of arguments to be furnished by the

observer by pointing to positions in the image space. In the

particular example cited, the function is the distance function,

and the result of executing this command would be to place the

distance between the designated points on the top of the

n-stack.

Since the actual procedures required for the module,

GRAPH, require the implementation of a number of lower-level

geometric procedures, some simple examples will be given.

These examples, at the same time, will provide some familiarity

with the mode of expression in SPEAK.

GEOMETRIC ROUTINES. In geometric routines, the

storage units will be the point and the segment. A point

will be designated by a pointer to the first of two

coordinate values. A segment will be designated by a

pointer to the first of four coordinate values. The

segment will be considered to be directed by the order of

the coordinates as stored. The direction will be assumed,

from the point (u1, y1 ) to the point, (u2, v2).

The distance function, DIST (p1, p2) will be com-

puted from the procedure,

*(-(u2, u1),-(u2, u1))))

* (- (v2, v1),-(v2, v1))

SORT ( + (

Without going into detail unnecessarily, it will be

assumed that the usual procedures for computing inner

products and vector products are available as executable

subroutines in NATIVE. The routines will be described as

they are introduced.

INTERACTIVE RULING. The cursor may be used to

rule a rectangle in the image space. Setting the horizontal

cursor at the base of the rectangle, the horizontal limits

may be indicated by the vertical cursor, with two data

transmissions. The horizontal cursor is then reset to the

top of the rectangle, and the horizontal limits set equal to

those previously established. The cursors function in this

way as T-squares.

PLOTTING. Since plotting commands differ from one

plotter to the next, the plotting modes described here are

those of the FR-80.

There are seven plot commands, (inclusive of the null

command). These are, M, D, DM, MR, DR, DMR.
These commands are interpreted in the following way.

The last position of the beam (or the current position) is

designated by cp. Execution of an M command always

moves the position of the cp to an updated position

designated by the command argument. Thus

M(#)

moves the plotter beam to the position indicated by the

pointer. On the other hand the command,

DM(#)

will draw a vector from the position, cp, to the position

indicated by the pointer, #, and will update the cp

pointer to the position, #. The command D will simply

draw a vector from the cp to the point indicated by the

argument.

The sign, R, denotes relative computation of the

position. In other words, the position indicated by the

argument is computed relative to the cp, as the vector

sum of the cp coordinates and the coordinates of the

argument. The addition of the R as a suffix increases the

number of non-null commands to six.

The particular plotter referred to, the FR-80, also

provides for the use of a repeat command. This will be

ignored in this presentation. Repetitive sequences of plot

commands may be expressed in SPEAK.

The two modes of plotting designated by D and DM
correspond to the topological notions of chain and

cochain.

For example, a sequence of D commands,

D Pi

where the Pj are points of a list, will result in a plot of a

star of rays emenating from the position marking the

current cp.

On the other hand a command, M (p^ followed by a

sequence

DM( Pi )i = 2

will result in the plotting of a connected chain, a

polygonal arc, beginning with the first point of the list,

and ending with the last.
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ICONOSCOPIC FUNCTIONS. These functions, by means

of which the terminal "views" the image, are fundamental

to the system of interactive graphics. They are designated

as NRPOINT, NRSEG, and NRBLOCK.

As suggested by the mnemonics, NRPOINT finds the

point of the image nearest to the designated point,

NRSEG finds the segment nearest the indicated point,

and NRBLOCK finds the identifier of the 2-cell in which

the point is located. This last function is implemented by

determining the half-plane in which the designated point

lies relative to the nearest segment.

An analogous function NEARCH, will identify the

nearest character to the position pointed to.

Coordinate Transformations. The internal map model is

furnished with a coordinate system known as the model

coordinates, or the model frame of reference. The image

space on the face of the cathode ray tube (CRT) is

referenced by a coordinate system known as the raster

coordinates. The schematic diagram in figure 11-6 illu-

strates the relations among these coordinate systems and

the actual image. There are three distinct coordinate

systems to be considered: those of the model, the raster

coordinates, and the actual geometric coordinates of the

tube face. For all practical purposes, the distinction

between the coordinates of the tube face and the raster

coordinates may be ignored, and these systems will be

referred to only as the raster system.

The procedure scale operates on a segment list. With a

given image space designated by umax , u min , v max , v min ,

and a given model image with range, x max , x min , y max ,

Vmin' tne SCALE procedure determines the parameters

of a similarity transformation which results in the largest

image of the model that will fit in the image space. These

parameters are a translation of the center of the model

image, relative to the center of the image space, and a

scale factor. The inverse of this transformation is com-

puted simply.

The procedure, SCALE, is applied to the segment list

for which the graph is required. The actual raster

coordinates are held in a list corresponding to the

segment list (inlist). This list is known as "plotlist."

A second scaling procedure is used to obtain an

enlarged image of a specified neighborhood of the map.

The procedure is called ZOOM, because of the analyogous

photographic procedure. ZOOM parameters are deter-

mined with reference to a given image. The cursors are

used to define the area to be displayed. This requires four

data transmissions from the cursor. Two transmissions

define the horizontal limits, and two define the vertical

limits of the image.

A procedure, CLIP, is then applied using the new

image parameters. CLIP computes the intercepts of

segments belonging to the rescaled raster image, and

eliminates those parts of segments outside the image

space.

The relationships among the several image models are

indicated in figure 11-7.

THE INTERACTIVE EDIT DISPLA. The program

DISPLA is the main control for the analysis, correction,

and updating of the map model.

The illustration shows the image space as seen from

the crt. DISPLA is supported by a number of lower level

modules: NEARPOINT, NEARSEG, NEARBLOCK,
NEARCH.

A number of single characters have a contextually

defined meaning. The first group of such characters is:

M-map, N-name, V-node, B-block, T-tract, H-house. These

characters are interpreted within the module DISPLA.

Their meanings are defined only within this context.

Thus,

M(#)

will result in a typeout at the indicated position of the

map-sheet number of the nearest vertex. Any of the

characters listed above followed by the sign, #, will result

in an annotation of a reference graph.

For example, N (#) would annotate a segment

according to a fixed format with the associated street

name.

If a command such as V ( #) is executed with the

pointer outside the image space, all elements of type V
(in this case nodes) will be annotated.

The second group of characters is interpreted within

DISPLA as calls to corresponding subroutines. The

characters of this group are, U, C, D, M, Z, MV, W, R,

EX, HOM, R.

These characters or character groups are interpreted as

subroutines.

The character E is a qualifier for the graph annotation

procedures, signifying that only essential vertices are to

be annotated.

The functions designated are as follows:

U is the update procedure. This procedure has been

described within the section dealing with the subsystem,

TOPO.

Correction data may be supplied by using the DIME
format as the format of the correction data.

Thus

segment, node, node, block, block

will be interpreted as the new segment to be inserted. The

old segment will in effect be deleted, and the new one

inserted.

For each nonblank field, the update procedure is

performed, following the insertion of this data and the

character, U (for update).

In the mode, change, designated by the character C,

one begins by designating a segment with the cursor. The

cursor disappears and reappears at the from-node of the

segment. A typein (including a blank) is accepted and the

cursor disappears and reappears at the to-node. The

cursor moves through the DIME sequence, covering all

four segment fields.
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CELL 10 101

DIMENSION 2

COMP. n1 nO H a

1 1 2 1

SET CROSS HAIR, ENTER CHAR:

SCALE>—

SCALEINV
<

image space

Figure II-6

NVBESCAZDN R W#

SET CURSOR, THEN ENTER

Tract 10 * 12

Blk 104 * 107

M MAP
N - NAME
V - NODE
B BLOCK
T - TRACT
H HOUSE
U PERFORM UPDATE
E ESSENTIAL
C CHANGE
Z ZOOM
D DELETE
MV - MOVE
W WALK
R RETURN

Map 1*1

Node 2*222

Tableau of CRT screen, DISPLAY

Example illustrates changes in Tract, Block, Map, and Node numbers.

Graph consists of the single segment as shown

Figure 1
1 -7
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With the data being put in this way, the symbol U will

cause execution of the update program. The reason for

moving the cursor is to cue the observer as to the proper

orientation of the segment. The data is typed in a single

line, as shown in the standard format above. There is,

therefore, no overwriting of the annotation in the image

space.

The DISPLA program also functions in the analytic

sequences. For example, if a fundamental neighborhood

of a vertex has a boundary not homologous to zero, then

the procedure, EX, will find the external boundary,

identifying the chain. HOM is then used to obtain the

homologous internal boundaries. These boundaries are

replaced by other homologous boundaries forming a

chain of homologous boundaries, finally terminating with

the original external boundary homologous to zero. This

chain of homologies may be followed graphically through

the display program.

A segment may be deleted entirely by the command,

D(#)

in which the sign, #, designates the segment to be deleted.

A new segment may be created by the command,

CS

The DISPLA program will respond with an assignment

of the segment identifier,

CS segid

The observer will then fill the remaining fields in

order, and then an update command will be issued to

insert the new segment in the file.

Coordinate Corrections. The procedure

M ( #, # )

will cause the movement of the point from the first to the

second indicated position, counting from the right. That

is, one first identifies the point, then indicates the

position to which it is to be moved.

The movement of a point is accompanied by a

change in the file coordinates associated with the point.

The procedure is facilitated by use of the ZOOM
procedure, which will provide an enlargement of the

image in the neighborhood of the point to which the

specified point is to be moved.

Summary of ARITHMICON Procedures

SPEAK

PARSE ; the pushdown parser, from p-stack to

n-stack

IF ; transfers the decision from the n-stack

to the f-stack.

THEN ; conditional parse, if stopping rule on

f-stack.

ELSE ; identical with above for complemen-

tary stopping rule

ENDIF ; removes governing decision from f-

stack

DO ; conditional parse beginning at reflex-

ive reference.

[ ] ; scope of a reflexive reference, begin-

ning and end

{ } ; scope of a substitution

< > ; conditional string

t ; pop stack

I ; push to stack

•*-
; transfer data to address

; ; transfer substitute values to substitu-

tion stack

+, — ,
*, **, / ; usual arithmetic operators.

Note: SPEAK procedures written in left-hand Polish;

parentheses and commas are ignored by the processor, and

may be used as desired.

AUXILIARY FUNCTIONS

READ ; transfers a page from a disk file to

buffer

; transfers a page from core to a disk-

file

TYPE ; types an ASCII character string to

terminal

ACCEPT ; accepts an ASCII string from terminal

INTERPRET ; interprets input character strings

ENCODE ; encodes internal formats to ASCII for

output

BFIND ; finds a key in a B-tree

BINSERT ; inserts a key in a B-tree

BDELETE ; deletes a key from a B-tree

BSEQ ; obtains a sequence of keys from a

B-tree

UPDATE ; replaces a DIME segment and associ-

ated index references by a new seg-

ment with new index references.
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TOPO

CELL
E1

SELECT
DIME

HOMOL
CHAINS

KIRCHOFF
INTERSECT
PIP

INDEX

EXTERNAL
FOLDS

GRAPH

NEARPOINT
NEARSEG
NEARBLOCK

lists input in cellist

retrieves segments incident to cells in

cellist

selects segments to be processed

retrieves topo data for selected seg-

ments

transfers selected cells to cellist

forms essential chains from a segment

list

connectivity analysis of a graph

tests intersection of two chains

point in polygon routine

positive or negative sense of traverse

of a boundary

identifies an external boundary

detects the presence of folds in a

neighborhood

gets nearest point to cross hairs

gets nearest segment

gets nearest block

NEARCHAR gets nearest character

PLOT plot graph from plotlist

SCALE scales a model image to crt image

space

SCALEINV inverse of scale

CLIP intercepts of segments with borders of

image space

ZOOM magnifies local neighborhood

WALK a version of the psuedo dual is plotted

DISPLAY display codes listed below

N name of street

H house number

V node number

M map sheet number

T tract number

B block number

E essential

C change

D delete

MV move

W a call to WALK
Z ' a call to ZOOM
R RETURN
U call UPDATE
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Appendix A. Homology

The notion of a homology can be formulated in terms of cells,

chains, and the boundary and coboundary operations. A 1-

chain is said to be homologous to zero,

C 1 ^0

if it is the boundary of some 2-chain. In this case, the chain

must be some collection of 1-circuits. The term "cohomology"

may be defined by replacing the elements of the above

definition by their duals.

Two 1 -chains are said to be homologous to each other

Ci + C\ 'V/

Since the bounding 1-circuits are all homologous to zero,

every 1-circuit satisfies some homology

C'%2 XiN-

in which the terms, N, , form a complete set of nonbounding

1-circuits.

A few examples will help to clarify these notions.

Figure A-1 represents the map of a torus on a rectangle.

The two independent nonbounding 1-circuits are repre-

sented by a pair of adjacent edges, a and b, as shown.

Every 1-circuit on the torus satisfies a homology of the

form

C 1
'v x x a + x2 b

For example, the 1-circuit C 1
indicated on the diagram,

together with the nonbounding circuits b + 2 a form the

boundaries of two 2-cells, and hence this combination is

homologous to zero. It follows that the particular C 1
is

homologous (mod 2) to the 1-circuit b.

The second example is the annular ring of figure A-2.

Each of the pair of 1-circuits a and b, which together

bound the annulus, are homologous to one another, but

neither is homologous to zero.

Figure A-2
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Appendix B. Syntax of SPEAK

In the presentation of substitution already given, the bound

variables were named sequentially, as x1, . . ,xn. This was done

in the interest of simplicity in explaining the operation of the

substitution stack. A freer use of variable names may be

achieved by a simple modification of this operation, which in

effect subscripts the substitution sign, ";", thus,

; variable-name, procedure

In the following discussion, the formal syntax of SPEAK will

be presented as a sequence of productions. The convention for

definition of a syntactic construct is,

construct being defined; definition

Literals are enclosed in quotes, and "term" is the construct

already defined.

The highest level construct defined is the "procedure."

procedure: a sequence of terms, or

a substitution-procedure

an iteration, or

a conditional procedure, or

null

substitution procedure:

"
{
" procedure, substitution-sequence, " }"

iteration:

"[DO THEN", procedure, "IF", procedure, "]
"

conditional procedure:

"ENDIF ELSE", procedure, "THEN", procedure,

"IF", procedure

An eligible variable-name is an alphanumeric word not in the

symbol table, and not bound in the substitution stack. A
variable not bound is called free.

Syntax Errors

The principal errors detected by the processor are the

following:

• Attempt to bind a bound variable

• Reference to a free variable within a procedure

• Ineligible variable name

• Unmated pairs of square brackets, braces, or "ENDIF-IF"

pairs.

• Insufficient number of arguments for an executable

procedure on the output stack (n-stack).

• Attempt to pop an empty system stack
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